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Abstract

The work presented hzre concerns microwave interaction

with plasmas in gas discharges and semiconductors. The main aim

of the investigations has been to get a basic understanding of some

central problems in this field that have applications to plasma ampli-

fiers.

The different sub-reports can be summarized as follows.

I. The excitation of waves in a waveguide partially filled

with a cool isotropic plasma is studied. Special attention is paid to

cases where backward waves exist and the influence of a drift motion

of the plasma is considered.

Ii. A circular waveguide is filled with two concentric die-

lectrics and with an infinitely thin metal tube between the dielectrics

from z = 0 to z = + o0. The effect of the discontinuity at z = 0 on a

dominant circularly symmetric TM-mode incident from z = - .15 in-

vestigated. The results have applications to plasma waveguides.

III. Wave propagation in plasma waveguides is studied theore-

tically and experimentally. Dispersion curves showing the existence of

backward-waves are given for the surface-wave dipole modes. The

quasi-static solutions have been compared to the exact ones. Experi-

ments have been performed and show good agreement with the theory.

IV. Electron plasma resonance absorption is observed in an

n-type crystal of Ge at 35. 000 Mc/sec and liquid hydrogen temperature.

The crystal, in the form of a rod, is placed across a rectangular wave-

guide parallel to the broad walls. No static magnetic field is applied.

Microwave power absorption of a magnitude and temperature dependence

closely agreeing with that predicted by an approximate theory developed

by the author is measured using a suitably doped Ge specimen. Obser-

vation of plasma resonance absorption gives a direct method to deter-

mine the charge carrier density in semiconductors.

V. It is shown that the ordinary theory, which describes a

magnetized plasma as an arisotropic dielectric, can be used to describe

the magneto-plasma resonances observed in semiconductors and metals.

i"



VI. The variation of plasma density and electron-temperature

along the positive column of a low-pressure Hg-discharge is studied by

means of a microwave cavity and Langmuir probes.

VII. The noise-radiation from a low-pressure Hg-discharge

inside a waveguide has been measured. The scattering and absorption

of a coherent signal has also ben measured and compared with the

noise- spectra.

VIII. Using Kirchhoff's law and a simple hydrodynamic model

it is shown that thermally excited longitudinal waves give rise to noise

emission in the microwave region from cylindrical gaseous discharges.

The emitted radiation has a characteristic spectrum with several sharp

peaks at the resonance frequencies of the longitudinal standing waves.

The predicted spectrum seems to agree well with experiments.



Table of Contents

Page

I Excitation of Plasma Waveguides with Backward Wave

Modes (by B. Agdur and B. Enander)

II A Discontinuity Problem in a Circular Waveguide

containing two Dielectrics (by B. Enander) Z4

III Investigations of Backward Wave Modes in Plasma

Waveguides (by L. Alfredsson) 42

IV Plasma Resonance in a Germanium Rod (by F. Sellberg) 63

V Magneto-Plasma Resonances (by P. Hedvall and

F. Lindvall) 84

VI Variations of Plasma Parameters along a Positive

Column of a Mercury Discharge (by J. Bach-Andersen

and A. Nord) 94

VII Experiments on Noise Radiation from a Plasma in a

Waveguide (by B. Kerzar) 103

VIII Microwave Emission - from a Cylindrical Plasma

(by P. Weissglas) 113
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I. EXCITATION OF BACKWARD WAVE MODES IN PLASMA WAVEGUIDES

Introduction

It is known that in waveguides partially filled with a homogeneous medium

that may either be isotropic or anisotropic there exist modes with negative

dispersion (backward waves). This medium can be an ordinary dielectric

(CLARRICOATS 1960), a plasma ('RIVELPIECE 1959), (OLINER 1962), or a ferrite

(TRIVELPIECE 1961). In order to get more insight into the nature of these modes

we will study the excitation of a circularly cylindrical waveguide containing a

homogeneous, cool, isotropic plasma column (Fig. 1). The frequency of the

exciting signal will be assumed to be so high that the motion of the ions can be

neglected.

We will first consider under what conditions negative dispersion may exist

in the system shown in Fig. 1 and discuss the general behaviour of the modes in

this waveguide. The modes that exist in this system are in general hybrid modes

with both F5- and Bz-components. Only modes with no azimuthal field variations

are pure TE- or TM-modes.

The power flow, P, in the z-direction through a crots-section of this

waveguide can for one mode be written in the following form:
008 a- f z2 .n2 2

P=_of fRe(E X *)dS ff _ o _ r ) Bn 2

20 2fZ (C ~22L ar r zJ
0 0

2 2 2 +P2

+ n (T 2 L c Po n a 1+c E- - + ( 7j (B E )  dS (1)
ar r zj 2 r zZ"

where E eJ(wt-PZ) e jn  is the electric field component in the z-direction (the sameS

relation holds for B and the magnetic field).z

PO C O

2
= 1 - , , w is the plasma frequency.

For a lossless, passive, uniform waveguide one can deduce the following

relation between the power flow, the group velocity (p), and the stored energy

per unit length (W),

P - W (2)
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provided is real (MHORNEY 1962). Backward waves occur when the phase velocity
aw

and the group velocity are opposite (3 < 0).

Equation (1) together with Eq. (2) shows that backward waves cannot exist

for TE-modes. Nor can they exist for TN-modes if z > 0. By performing the inte-

gration in Eq. (1) it can be shown that backward waves cannot exist for Th-modes

even if c < 0. Thus, it is only for hybrid modes that backward waves may occur

in the system shown in Fig. 1.

The case where the fields vay as e in the g-direction will now be

discussed. The characteristic equation for this case has been studied (ALIREDS-

SON 1963) and the dispersion curves have the general form shown in 'ig.(2.

The dispersion curves I, II, ... correspond to modes which are very similar

to those in the empty waveguide. These modes are infinite in number and have a

phase velocity larger than the velocity of light. The waves associated with

dispersion curve 1-2-3 can propagate with a phase velocity smaller than the

velocity of light and are very similar to waves on a free plasma rod. At the

points Q and Q2 , where &,;3/80 = 0, the dispersion curve 1-2-3 will be connected

with the dispersion curves 1', 2', 3' and 1", 2", 3", which are only schematical-

ly indicated in fhe figure. These disDersion curves correspond to complex values

of the propagation constants and for one pair of branches, e.g. 1', 2', the 3-

values are complex conjugate for a given value of w. If losses are introduced,

branch 1 will no longer be connected with branches 2 and 2' but only with branch

1'. The situation will be the same for point Q2 . Thus the dispersion curve 1-2-3

breaks up into three different dispersion curves correspondin to three different

modes, which for convenience will be called the plasma modes. In case of zero

losses, the fields corresponding to the dashed dispersion curves carry no energy

(CHCOPNY 1962) and decrease exponentially from the source of excitation. The

number of plasma modes may be one, two or three (as in the case above). Fig. 3

shows the dispersion curves for the plasma modes for three different values of

the plasma frequency at given r./r In the following we will primarily be
A2' piaiyb

interested in the excitation of the propagating plasma modes.

Excitation by a Gap

We will now determine the fields in the system showm in Fig. 1 when it is

excited through the gap and the tangential E-fields at r = r 2 for I zj - are

given. In the Appendix it is shown that for z > 0 there will only exist waves
8w

with - 0 and for z < 0 only waves with <0. Thus, for modes with negative

dispersion the phase velocity will be directed towards the excitation gap.



The differential equation for Ez (and B z) is

a2 E a8E a2Ez

, '1 z (c, _ 1 o (3)
ar22  r z 2

The Fourier transforms Tz(r,3) and z (r,s) are defined as
z

+00

Vz = - fE z(rz)e-J Zdz

(4)

? z f B (r,z)e-j'z

and 4z (and Tz) will thus satisfy the equation

z 1 "z 2 1
-4. + (c 2 0 (5)

dr2 r dr r 2 z

The Fourier transforms of the transverse components are given by

- 2 2' "- + - (6)
2T = 2 ' V T z-'

e3° -0 poc

-J +2 z]T (7)%T =  2 2 7 C T'.

0

In the plasma region, r < a, the solution of (5) is of the forn

14z = A 1 (h1r) ()

4Z = BI1 (h r)

In the vacuum region a < r -< b

T+°z = C1 (h2r) 
+ DK1(h2r)

* z = ElI(h 2 r) 
+ FK 1 (h2r)

where h I  2 2)i a h 2 -

The boundary conditions are

Yz' z' I continuous at r a (10)

Tz(O) = R(p); Q) = Q(p) at r = b (11)
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where 1 +

R 1() = f E z)e-JZdz (12)

and +1

Q(3 1.. f Eo(Z)ej Zdz (13)

Using the boundary conditions together with (8) and (9) we get the following

equation for the coefficients A, B....:

-1 0 121 K 0 0 A 0
0 -I 0 0 I K21  1 1

11 21 , 21 D
K J~ -22K)

rhl - h 1 I21 21 h 21 h2 21
r 1 1 r h 1 r h2  2 2 (411 12 12 (14)

jf3 K2' I
J- o  -- 13- J--Io - ,' -u-- 0

h 111 rh 2  1 hc 21 hc 21 h2 21 h 2

2 2 rh 0210
122 22 0 2 £ P

o 0 1~-I - K F-I QK~F2 22 rh2 22 -h2 22 h 2K2 F

1 2 12

where the following abbreviations have been used

1 11 1 1(h 1 1 2 (h2r1)  1 22 I(h r2 )

and similarly for K, 11 and K1 .

Solving A in Eq. (14) and using the inverse Fourier transform on Eq. (8) we

obtain the following expression for the Ez -field inside the plasma column:

E (r) 1 L FC3)R(Q + G(P)0(0) I (bn r)e+j)Z do (15)
z 2- A(P) 1 1

where h 2 111I -
-~)h - ( -( I

A) h2',. h 1 2 2 "-2 1 - ;.22121) - 22Xi1 -T22 21

1 2  11

" - 1 (I22K2 - 122121) - (I22K21 - K211)} -

- ~ (r--1o)2 (122K21  122121 )(I22121 -122121)
2
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F3)= ' ~h (112 - '~I - -I2~ L22121)I I'

1 h h2) (2K K22121
2 r r f_ -'2 2I (

22

G() -1 2 1 - 12
G~p r 1ll 12 ( h 2  h- 2) (X21122 - 121K22 )

r1l r0 1 h2

A( 3) 0 is the characteristic equation for the plasma waveguide (AGDER 1962).

The other field components can be obtained in an analogous way. For z < 0

this integral is evaluated by a contour integration along the contour shown in

Fig. 4. The integral along the semiicircle goes tro zero when R - - and the value of

the contour integral is equal to the integral (15). The inte~rand in (15) has no

branch points (the branch point singularities from individual terms cancel) but

an infinite number of poles which are indicated in Fig. 4. One can distinguish

between three different types of poles: 1) poles on the imaginary axis which

correspond to pure cut-off modes; 2) poles in the complex plane occurring in

complex conjugate pairs which correspond to the dashed curves in FiZ. 2 and which

in analogy with the cut-off modes do not contribute to the energy flow; 3) poles

on the real axis which correspond to propagating modes. If losses are introuced,

the poles on the real axis will move either upwards or downwards in the P-Dlane

depending on whether they correspond to waves with 2,< 0 or - >0 , as shown in

the Appendix.

As an example we study the excitation of the waveguide at a frequency "lo at

which only plasma modes are propagating and have a dispersion characteristic as

shown in Fig. 5. From the Appendix and the figure it is seen that

at P1 2-- , 0 pole in lower halfplane

-- < 0 .. .. upper

-< 0 .. .. upper -

- ;2L a', 0 .. . o,'wer ,

0 lower
* ~ P3 APi tloe

aw
-P3 a < 0 . . uer

In the limiting case of no losses we therefore have to deform the contour as

shown in Fi, . 6.



The value of the integral in Eq. (15) is then obtained from

2fj2Residues = zF( m I I(h mr)eJomZ (16)

assuming that all poles are simple. Double poles occur for points on the disper-

sion curve where

ao-o0; 8= 0).

On the basis of the theory developed we will now study the excitation of

plasma waves for a plasma waveguide where r2 5 and r Ic 1.7. The dispersion

curve for this case is given in Fig. 3. As seen from the figure it is possible to

excite three different plasma modes in this case. The cut-off frequencies for the

waveguide modes are well above the cut-off frequencies for the plasma modes for

these parameter values, and for w/ -< the plasma modes will be the only pro-
p

pagating modes excited in the waveguide.

The excitation will be studied when the electric field in the gap is: E =

= b(z - 0); E = 0, which corresponds to a unit voltage across an infinitelyTo 1

short gap and gives R = - and Q = 0. Far away from the gap the cut-off nodes

have a negligible amplitude and only the propagatin: plasma modes will contribute

to the fields. Fio. 7 shows the E -fielf2 at the boundary of the plasma colu-m forz

the plasma modes excited by the unit gap volta-e. The power flow P in a plasma

mode when this mode has a given value of the E -field at the plasma boundary isz

shown for the three plasma modes in Fig. 8. The power flow has been ceoMPuted from

Eq. (1) and Ez at the boundary has the value I (h1 r ). By combining the results

shown in Fi&. 7 and Fig. 8, Fir. 9 has been obtained which shows the power flow P

in the different modes associated by the above excitation.

The asymtotes in these figures correspond to the two points on the dispersion

curves that separate the different plasma modes. At these points E and P-*.z
P1 + 0, which follows from Eq. (2) because W is finite while - 0. As pointed

out above the character of the dispersion curve will change drastically around

these points when losses are introduced and the same will hold for the curves

shown in the last figures. When r, - 0, r - 0 because the plasma mode becomes a
z

pure TE-mode in the limit 0 0. Por the same reason P1  when - 0.P 1

when r - - simply because the -iven E -field at the plasma boundary approaches
iz

infinity.



The main conclusion that can be drawn from the results in Figs. 7 and 9 is

that the power and electric field contributions from mode C are in general very

small in comparison with the contributions from the two other plasma modes.

Excitation by a Given Transverse Field

For comparison with the results obtained above we will here study the power

flow in the plasma modes for the same waveguide as above (-52 = 5; r = 1.7)

when the transverse field in the plane z = 0 is ,4iven by
-o -Jr 2  (x r xlr'(

B 2 (- + Jr j ej .....
T Lx 1 r 1 r 2  r2  "~i

where x1', is the first root of J'(x) 0. This is the same field as the transverse

electric field for the T 11-mode in an empty waveguide with radius r2. EB!)anding

the field in the plasma waveguide for z = 0 in the different modes and allowing

only modes with - > 0 we put

ao

£T n~
n= 1

where B - e' ) is the transverse field in the n:th mode. Using the ortho-
Th

gonality relation

xHTm)dS 0 (19)

we obtain from Eq.(18):

a = (20)
n f( Hybx dS

The power flow in the n:th mode will then be:

0x H ) dS 2

P I T Tn z (21)

2 '(E'<x H )h dS

P has been computed for the plasma nodes treated -n page and the results are

2
given in Fig. 10. Also in this case the nower transported in the slowest plasma

mode (C) is in general negligible in cor ,arison with that transported in the

other two modes.
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Influence of a Drift Velocity on Dispersion Curves

If the plasma electrons in the plasma waveguide treated above are assumed to

have a drift velocity the dispersion curves for the new system (w', p') can be

obtained by the following transformation of the w,p-curves given above.

W1 = 1 0 " (' +  v) (22)
V0V I - (-)

-,P I -1 " -- (23)

v is the drift velocity of the plasma electrons in the positive z-direction. The

dispersion curves in the w,f-system are not affected by a motion of the waveguide

walls.

Fig. 11 illustrates the influence of a drift velocity of the electrons. The

dashed curve corrcaponds to ;o = 0. In the case shown in this figure the group0

velocity in the w', '-system is always positive and we can therefore only excite

propagating plasma modes in the positive z-direction. The group velocity for the

plasma modes treated above may be very small and even a very small drift velocity

may have a large effect on the dispersion characteristic of the system. This is

shown by Fig. 12.

APPENDIX

The waveguide described above belongs to a class of waveguides which have a

characteristic equation

F(,w,r,jv) = 0 (24)

where F is an even function of 8 and real for real values of wz, A and jv. v is

a loss parameter.

If W 1  1 (both real) is a solution to Eq. (24) when v = 0 we can obtain the

following two solutions when small losses are introduced (v = A,)

1

(I) 1' 1 -P1 P • jAV (25)

dF

(11)IJ)- 'IV; ~3(26)



The second solution corresponds to a cavity making damped oscillations and we

must therefore require
aF_

-c 0 (27)

1

-jpz
Considering the behaviour of a wave e- excited at z 0 0, when z - 4ce, it is

necessary that Im(p) < 0. For such a wave we therefore have the following

condition

aF

( 1 - 0 (28)

We therefore finally obtain

8F

z -- '0 (29)

This means that only those waves which have the group velocity directed outwards

from the place of excitation will be excited.

This result has been proved before using more sophisticated methods (BESLa,

1959).
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FI Circularly cylindrical waveguide with central plasma column
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U. A DISCONTINUITY PROBLEM IN A CIRCULAR WAVEGUIDE

CONTAINING TWO DIELECTRICS

Introduction

In the study and application of plasma waveguides it is

important to know how energy is transferred between conventional

waveguides and plasma waveguides. An attempt to obtain approximate

solutions of this problem by a variational method has been made

(KALMYKOVA 1961).

In this paper we shall investigate a waveguide structure

for which exact solutions can be obtained. The problem is formulated

and solved for a waveguide that, for values of the dielectric constant

less than one, represents a waveguide containing a cool, homogeneous

plasma.

Chapter 1. Formulation of the problem

The waveguide system which we shall investigate in this

paper is shown in Fig. 1. The part from z = 0 to z = - m consists of

a circularly cylindrical metal tube containing two concentric, lossless

dielectrics. The dielectric constant is e I in the region r < a and €2

in a < r < b. In the following this waveguide will be called waveguide 1.

The waveguide system from z = 0 to z = + - is identical with the first

part except for an infinitely thin metal tube between the two dielectrics.

This part thus consists of two waveguides: a coaxial line (waveguide 2)

filled with dielectric (e.), and a circularly cylindrical waveguide

(waveguide 3) with radius a and filled with dielectric (6 1).

We shall consider the effect of the discontinuity at z = 0

when the dominant, circularly symmetric TM-mode in waveguide I is

incident from z = -m* Because of the discontinuity the incident wave

will generally excite all circularly symmetric TM-modes in the three

waveguides, including the TEM-mode in waveguide 2. For each mode,

I
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only the wave with the group velocity directed away from the discon-

tinuity will be excited.

By means of a method based on the WIENER-HOPF technique

(see e.g. JONES 1952, HALLEN 1953) we obtain the solution to

MAXWELL' s equations that gives the scattered field due to the dis-

continuity. The general solution has such a complex mathematical

form that it is of little practical value. Simpker solutions can, however,

be found for certain conditions. Thus we shall restrict the values of

the parameters eis C., a, b, and the frequency of the incident wave,

w, so that a) in waveguide I only one mode can propagate while the

other modes are cut off, b) in waveguide 2 all modes except the TEM-

mode are cut off, c) in waveguide 3 all modes are cut off. The fields

of the cut-off modes decrease exponentially away from the disconti-

nuity. For large z-values they become negligible compared with the

fields of the propagating modes. As the system is lossless, we now

need only three parameters to completely characterize the fields

far from the discontinuity, e. g. the amplitude and phase of the reflec-

ted dominant mode in waveguide I and the phase of the transmitted

TEM-mode in waveguide 2.

I
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Chapter 2. Some characteristics of the relevant modes

In this chapter we mainly consider how the conditions a, b,

and c of Ch. I can be fulfilled.

For TM 0m-modes in waveguide 3 with a time- and z-depen-

dence e- j (cut -P3 m z ) we have the following dispersion relation:

Jo(a 1 k - P3m ) = 0 (1)

or

= k2  
(2)

where P3m is the wave number for the TM 0 m-mode

J0 is the zero order BESSEL function

k0 -C

c is the velocity of light

pm is the m t h root of J0 (p) = 0

All modes are cut off in this waveguide if
Pl c

< - or I < 0 (3)

In waveguide 2 the TEM-mode has the wave number

-c(4)

and propagates if £ > 0. If the wave number for the TM0 m-mode in

this waveguide is denoted by IZ, M+ we have:

2 2 92
2, m+l M 2 k0 - g

th
where g is the m root of the equation:

Jo(ag) YD(bg) - Yo(ag) 30 (bg) f 0 (6)

where Y0 is the zero order NEUMANN function.
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All TMo n-modes are cut-off if

gl c
< -- 

(c

The dispersion equpation for TMo r-modes in waveguide 1

is (see e.g. AGDUR & ENANDER 1961):

C JO(ah 1 ) I J;(ah2 )Yo(bh 2 ) - Y;(ah 2 )Jo(bhz)] -

h I (h) (8)
- g Jo(ah1 ) [J0 (ahZ)Yo(bhZ) - YO(ahZ)Jo(bhZ)] =0

2 2'where hI = (C 1k - P

The wave numbers, 1m, in this waveguide are those values of that

satisfy Eq. (8). In order to fulfil condition a we must assume that

only one of these, say P, is real.

The wave numbers for the cut-off modes in waveguide I may

be complex1 ) as distinguished from the wave numbers for the cut-off

modes in, waveguides 2 and 3 which are purely imaginary. If Pin is a

complex wave number that satisfies Eq. (8) then the complex conjugate

value, In' also satisfies this equation. This can be proved by means

of the principle of reflection for analytic functions.

1) The proof by ADLER (ADLER 1952), that the wave

numbers of a waveguide of this kind cannot be complex,

is not correct.
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Figure 2 shows dispersion curves for TM m-modes in

waveguide I -for a case where the inner dielectric is a plasma and the

outer is vacuum. In this diagram complex branches of the dispersion

curves (not shown in the figure) start out from points where the curves

have a vertical slope, e. g. A I and A 2 . The complex branches are in

this case connected to branches where the wave number is purely

imaginary as distinguished from the complex branches found for dipole

modes in similar waveguides (AGDUR 1963, OLINER 1962, AGDUR &

ENANDER 1963).

In the case shown in Fig. 2 the dominant mode has a zero-

cut-off frequency and a phase velocity smaller than the velocity of light.

This mode resembles the surface-wave mode on a plasma column and

will always exist when I < -C 2 and e 2 > 0. When both c I and 2

are positive, the dominant mode has a cut-off frequency different from

zero and the dispersion diagram resembles that of an ordinary circular

waveguide (BANOS 1951).

Id
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Chapter 3. Analysis

Assuming a time dependence e jwt , we find the following

differential equation for the z-component of the total electric field in

the coordinate system shown in Fig.. 1.

8 Ezt 1 8E .t 2 8Ezt" zt

_+_ +tk 0 E + = (9)
ar r 0z z

where k = t
C,

ande =c when r < a

e =C 2 whena < r <b

The boundary conditions are:

Ezt O when r = b, -oo < z < +ao (10)

Ezt =0 when r = a, 0 < z < + ao (11)

Ezt continuous when r = a, -ao .< z <'0 (12)

The edge conditions at the discontinuity give (BOUWKAMP 1950)

Ez C z-when r = a and z - -0 (13)

We now divide the total electric and magnetic fields into

two parts, one representing the incident field and one the scattered

field, so that

Ezt Ezi + E z  (14)

In the whole region -co < z < +oo, r < a, the field of the incident

TM0 1 -mode is taken as

E = J 0 (rh 1 1 ) e (IS)

where P i is the propagation constant for the dominant mode in wave-

guide I and

h =(cIk 2- P 24. 11)2

hi I = ( € lko
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The scattered field, E z , shall satisfy the differential equation (9) and

the conditions (10), (121 and (13) but not (11). Instead of (II), we require

E z = -Ezi = -J 0 (rh 1 1 )e when r = a, 0 < z < +0 (o16)

We shall now introduce small losses in the dielectric by

letting e I and e be complex. The two propagating modes are then

slightly attenuated. The losses, which may be arbitrarily small, ar

introduced to facilitate the mathematical procedure; we shall eventually

let them tend to zero.

The wave numbers for the two propagating modes, p1 t and

will now have small imaginary parts (smaller than the imaginary

part of any wave number for the cut-off modes):

P I I -- i I +  JP!'I ( 7
1 = o1 1 + ip1( 7

P7 21

where Pjt' PZi P4'1 ' and P"1 are real positive numbers (aee Fig. 3).

Choose 6 equal to the smallest one of P' 1 and P"' . Then

IEIJ < C1 .- e 61 z when z- -o (18)

fEZ! < C2 . e-1zI when z - +oo, r > a (19)

-EZ! I < C3  e-6Iz when z-+oo, r< a (Z0)

Introduce the FOURIER transform of E
z

+00
= I ej z dz (Z1)

Transformation of Eqs. (9), (10), (IZ), and (15) yields

d4 2 1 + (sk7- - a Z =0 (22)
+ I r +  0 (z

drZ r

1= 0 at r =b (23)

4o continuous at r = a (Z4)



30.

The solution of Eq. (22) that satisfies the boundary condi-

tion (I5) can be written

o= A(a) I0 (7 1 r) for 0 < r < a (ZSa)

= B(a) [Io(7 2 r) K0 (72 b) - KO(7 2 r) 10(72 b)]
(25b)

for a < r <b

where I0 and K 0 are the modified zero-order BESSEL functions and

71= 1(a2  0k)

-c 2 - (26)72 (aZ _ 2 ko)P

7, and 7? are made single-valued through suitable branch cuts in the

complex a -plane.

For circularly symmetric TM-modes we have

aE a. 8HEz, - = ja) L0H +~c 3 27

H shall be continuous at r = a for -co < z < 0

and satisfy the edge condition
1

HT -. CZ Z when r = a and z- 0 (28)

Denote the FOURIER transform of H by 0. Transformation of Eq. (27)

gives: jC 0(29)

7

where 7 = 71 for r < a and7 = 72 for r >a

Using Eqs. (25a) and (25b) we get:

- CCA(a) I(7 1 r) for 0 < s < a (30)
7S10

ja): Z 0"

: B(a) [I;(7 2 r) K0 ( 2 b) -(31)

- K;(7Zr) I0 (7 2 b)] Lor a < r < b
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Divide , and 0 into two parts

+ 0 + + 0. (32)

where CO 0

. e- - e  dz (33)(27) z 0 z-z;2

and 0+ and 0_ are similarly defined.

From the behaviour of the fields at z = to Eqs. (14 (19),

and (20), we conclude that and o+ are analytic functions in the half-

plane Im(a) > -6, and that _ and I are analytic for-Im(a) < 6.

At r=a, q+, 4., and t shall be continuous, whereas 0+

is discontinuous. Let the values at r = a be q+(a), 4_(a), 0_(a), 0+(a+ 0),

and +a - 0). +(a) is obtained fromEqs. (16) and 3'):

•+a Jo(hl a) (34)
.(7 T(a a T 1(,= IT

From Eqs. (17), (18), (22), (23), (Z4), and (25), we now derive

J 0 (h1Ia)
(a -j-I1. = A I(l a(2i)1 (a.+p1 x)

(35)
B [I 0 (' 2a) K0(Y2 b) - K( a) 10(Y2b)]

0 (a+0)+ _(a)=1B B [1'(7 a) K( 2 b) -

- K;(ya) Io(y2 b) ]  (36)

j4Lc CV

th(rsltnge uai (an b means o A I;(35 a) (37)+ .71

By subtracting Eq. (37) from Eq. (36) and eliminating A and B from

the resulting equation by means of Eq. (35) we get

30 (hl I a) (38)

where we have put:
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L-- i/jo~ o ] . {o(h1 a) , [1( (a) K(Ob) -

" K0 (72 a) I 0(7 2 b) / 72 10 ( 1 a) [I0(72 a) K0 (72 b) -

-K(7za) 10 (72zb) ] - (s l 'Z/7,) I;(7,a) [ 0 (72 a) K0 (7 b) -

- K0 (72 a) 10(Y2 b)]}

and 0+(a - 0) - 0+(a + 0) = Ai+(a) which, incidentally, is the FOURIER

transform of the surface-current density in the inner conductor.

In Eq. (38), which is valid only in the strip -6 < Im() < 6

(see Fig. 3), both Aa) and _(a) are unknown functions of a. Never-

theless, they can be evaluated from this equation by means of

LIOUVILLE'S theorem. To do this we shall rewrite Eq. (38) in such

a form that one side of the equation is regular and bounded in the half-

plane Im(a) > -6 and the other side is regular and bounded in the

half-plane Im(a) < 6.

We introduce

M(a) - (L(a) (40)

and assume that M(a) can be factored in the following way:

M(a) = M+(a) M_(a) (41)

where M is regular and non-zero for Ir(a) > -6 and M is regular

and non-zero for Im(a) < 6 and
1

M+(a)- (a- 2 ) when jl -Poo, Im(a) > -6

• (42)
M_(a).-(a-) when Il-.. o, Im(a) < 6

Using Eq. (40) we write Eq. (38) in the fol/owing iorm

Jo(h, I a )
+(a) L +( ) + It---h 11 a()'- -

+ () L-P"I~o +151) =

- (a) " -Jo(h 1 1 a) I 1 (43)

ME 7 (C T +PIT' MT (-Pl1)



r 33.

'+Pit oil P~ M(,
where L+(a) 1 M+() and L.(a) -'--' 2

The left-hand side of this equation is a regular function in the half-plane

Im(a) > 6 and the right-hand side is regular in the half-plane Im(a) < 6.

The two half-planes have a common strip and the two sides of Eq. (34)

together define a function that is regular in the whole a-plane. Further,

we find from the edge conditions (13) and (28) and the definitions of *,

Eq. (33), and A + that

Combiin A (a)-3/Z when je I -., Im(a) > 0

S(a) - 1/ 2 when lal-.oo, Im(a)< 0 (44)

Combining this result with the assumed behaviour of M+ and M at

infinity we find that both sides of Eq. (43) tend to zero in their respec-

tive half-planes when I t x. According to LIOUVILLE'S theorem

the integral function defined by the two sides of Eq. (43) must then be

identically zero. Thus, putting the right-hand side equal to zero we
have J0 (h(,a)

hav_(a) 0 L
" 1  

) (45)(2r,) T" a+ III L_(-171

and from Eq. (35)

A Io(yIa) = B [1 0 (72 a) K 0 (72 b) -

(46)j Jo(ht~ia) L_(a)
- Ko(72a) IO(72b)] - - ------ a

The waveguide fields can then be obtained by using the FCURIER inver-

sion theorem on Eqs. (25).

4
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Before doing this, we shall construct functions M+ and M

having the requireo properties. Since

K0 (z) - 1o(z) -n(z) + f(z) (47)

where f(z) is an even, integral function, the ln(z) terms in L, (Eq. (39)),

cancel; thus L has no branch points. The numerator in the definition

V) of L is an integral function of a which is zero if and only if

or

where P2  and Pm are the wave numbers for waveguides 2 and 3. The

denominator is also an integral function of a and is zero if and only if

a Plm' where P are the wave numbers for waveguide 1. M(a)

has the same properties as L(a) except that M(a) does neither have-zeros

at a P 1 nor +les at a P, We now define M+(a) and M (a) by

o +jd

In M+(a)= M(z) dz (48)In +( )=73 z - a

and -oo + jd
6o je

In Ma) == In " n.M(Z) d-- (49)

-o + je

where -6 < d < e < +6

The use of CAUCHY principle values, indicated by P in front of the

integral sign, is necessary because M(a) -a I when a -ao.in the

strip, so that the ordinary integrals are divergent.

Defined in this way, M+ will be regular and non-zero in the

half-plane Im(a) > d. Similarly M will be regular and non-zero for

Im(a) < e. Further, from CAUCHY'S integral formula we find M+M_ =

M, when -6 < Im(a) < 6.
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To investigate the behaviour of M+(a) as Ja - o in the

upper half-plane, we write

co+jd
p ¢ In M(z) dz =I + 2 +13

-00+jd

where

zI - - z dz=o (&) when al -
z - a

-D+jd

I+ = jd -a -x+jd-In + )n d,

D

o In M(x+jd) I M(-x+jd)
13 + ,~A .X dx13 x+jd- a -x+ jd- a_+ x d

D

It can be shown that

I -- In IaI +0(1)

13 = 0(0)

when IcL"l -o; Im a > k, where d <k < 0

Therefore

M+ (a) = 0( 1 C) (50)

Similarly we find

l O([ - Fi) when jal-oo; Ima < lwheree>

>1>0

so that M and M_, defined by Eqs. (48) and (49), have the properties
+

assumed earlier.

The fields in the waveguide system can be obtained from

Eqs. (25) and (46) by means of the FOURIER inversion formula. As

pointed out in the introduction, it is usually only the propagating modes

that are of interest. The scattered E.-field at any point in the region

r < a is given by
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C +jf

___~ A(a) I 0 &r) e-jaz do51

where -6 < f < 6

For z < 0 we evaluate the integral in Eq. (51) by closing the integration

path in the upper half-plane and using the calculus of residues.

From Eqs. (43), (36), and (32) we then obtain:

Jo(hi a )  7Pi I La) a 21Ez 1-r L-(-P11) Cll 
+  -

r e (52)I0(71 r ) e -Ja z

io70 1 a) a+ 1 1 d

The integrand in (52) has poles at and only at a = m and the residues

at these poles give the amplitudes of the reflected modes in waveguide 1.

The reflected wave in the dominant mode is thus:

P 1I - PZ1 M(P 11 ) -JPt z

Ed 11 21 M--11)M+( 11) Ohl)e(

For the reflection coefficient R, defined as

E zdR = (r= )=0

zi

we get from Eq. (53)

P1- - P.1 M-(A1 1 )R (lI+ 1 M(l 1  54)

From Eqs. (48) and (49) we see that when the losses tend to zero

M_(P 1 1) = M+(PII)

so that . (55)

11x t 21

where and A 21 are the wavelengths for the two propagating modes.

4"
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For z > 0 we can obtain the fields in an analogous way by

closing the integration contour in the lower half,-plane. The Ez-field

will contain two propagating modes: one with the wave number 031V

which exactly cancels the incident wave; the other with the wave-zamber

P2, is the transmitted TEM-mode. The phase of the TEM-mode

together with the complex reflection coefficient (Eq. (54)) completely

characterize the fields far away from the discontinuity.

The simple formula for the magnitude of the reflection

coefficient Eq. (55) agrees with that obtained for the. special case -when

s s e (MAR.CUWITZ 1951) with the preliminary- results of an experi-

mental investigation that is being performed at our laboratory.

4.f
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111. INVESTIGATION OF BACIWARD-WAV! MOES IN PLASMA WAVBUGIDBS

Introduction

In recent years, sme authors (IRIVELPIECE, 1959 and 1961, aAUICOATS, 1960,

NAPOLI and SWARTZ, 1963, OLINER, 1959, AGDUR and ENANDER, 1962) have studied

wave propagation in inhomogeneous waveguides. Using ferrites, plasmas and ordinary

dielectrics, it is possible to achieve propagating backward-wave nodes in non-

periodic waveguides. This paper describes the surface-wave dipole nodes in the

plasma waveguide systems shown in Figs. 1 a-c.

Some experiments have been performed which generally show good agreement

with the theory.

Theory

I. General Remarks..

Wave propagation is studied in three different waveguide systems, infinite

in the direction of propagation (z-direction), with the cross-sections shown in

Figs. la-c.

The plasma, which is taken to be cool and lossless, is characterized by a

dielectric constant c = 1 - i2/ 2 where w is the plasma frequenc'y. Further,
p p p

the plasma is assumed to be homogeneous, i.e. no radial or axial density varia-

tions are taken into account. The signal frequency is assumed to be so high that

the motion of the ions can be neglected.

The electromagnetic fields are assumed to be

whrea ad!Bj Lai F1(r) + b. G(r)]. e jnT .ej(wt-pz) (1)

where a. and b. are constants, F.(r) and G.(r) are Bessel functions, is the

propagation constant and n characterizes the azimuthal variation.

The dispersion equations are derived by matching the electromagnetic fields

in the different regions using the ordinary boundary conditions. This leads to a

linear, homogeneous system of equations in the undeteraited amplitude coefficients.

Non-trivial solutions exist when the system determinant equals zero. As soon as

n Pi 0 there exist no pure TE- or TM-modes.

II. Plasma column surrounded by a homogeneous dielectric enclosed in a metal tube.

The system shown in Fig. 1 a consists of a central plasma column surrounded

by a homogeneous dielectric (E r) and a metal tube (c = c). The dispersion

equation for this system has been derived by several authors. It is repeated here



as given by AGDMR and ENANDER, (1962)
ip llk-"2

SJ11 I (J22Y2 1 - Y2 2 J 2 1) - e (J22Y21 - J21y22 )]×

1 k 1 (22Y21 - Y22 J2 1 ) - (J2 2 Y2 1 - Y 2J 1 )] (2)

2 2 2

n~rf~t~jL~i'](J 2  - y2 A2 1 )(J 2 2 1 ~ - J2 1y 2)
1 2

where J, Y, J and Y' represent Bessel functions of the first and second kind and

their derivatives. The following abbreviations have been used:

Jll a Jn(klrl) J21 jn(k 2r,) J22 
= Jn(k2 r2 )

and similarly for Y, P and Y'. Further

2
k 0 ( -r

1o p2 or
k 2 k OVcr T

- = P/k

The field components, omitting the factor e j it- OZ) are

EZ = [Ajn(k~r) BY(k 2r)] e jnT r r r

E A = Cjn(klr) • B nq  r rI

C kr r(3)

B = jJ(kr) + EY (k2r)] e n  r 1  r <r 2

niE

as F aE Z-1Sk2 (C-r 2 ) rTrc a
0

-=_ a Z 8 EZ-
r kL2(, 2 "r a? -5 1

0

B J [ "z Bz 4

r k2 (T_'3rJ0 4
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where the relations between the unknown asplitude coefficients are determined by

the boundary conditions.

To find the expressions for the dipole modes we put n -±t I in eqs. (2) and

(3).

Fig. 2 shows the principal behaviour of te dispersion curves obtained from

eq. (2). The velocity of light in the surrounding medium is v - c4T. This

gives the boundary between fast waves (vf - v) and slow waves (vf < v) which is

indicated by a thin solid line. The figure shows two different types of curves

E - P ... and A - B - C - D, indicating that there exist two different kinds of

modes that can propagate along the waveguide. The first-sentioned curves -

infinite in number - are fast modes related to those existing in the empty wave-

guide. In the following we shall mainly discuss the mode represented by A - B -

C - D. This is a surface-wave mode (plasma mode), it is closely related to the

modes on a free plasma column. (discussed in section IV).

Points on the (0,0)-curve where w/ 3 = 0 are branch points which means

that the dispersion curve, F(,O, ) = 0, enters the complex P-plane along two

complex conjugate branches. The branches (A', B' ... ) are drawn schematically

in Fig. 2; the branches belonging to negative g-vilues are excluded. If the wave-

guide is lossless these complex conjugate modes do not contribute to the power

transfer in the waveguide (CHORNEY, 1962).

If losses are introduced into the waveguide system the mode A - B - C - D

will split up into three different modes and the branches A- B, B - C and C - D

will not be connected to each other but to the ccmplex modes so that the mode

system will be for instance A' - A - B - B", B' - B - C - C" and C' - C - D - D'.

This means that the plasma mode will split up into a number of different, sepa-

rated plasma modes depending on how many branch points there are.

In the following the waveguide system is again taken to be lossless and the

whole curve A - B - C - D is conveniently called the plasma mode. This node

shows many interesting properties. For large p-values the mode asy totically

approaches the line £ + c = 0 (plasma resonance) and arbitrarily slow wavesp r
exist. The plasma mode is of TE-character when n = 0 and of T-character when

S-. c. The interval B - C exemplifies negative dispersion i.e. group and phase

velocity of opposite sign.

x) The explicit form of the dispersion equation w - f(p) is expanded in a
Taylor series around the branch point. Using. the relations w - f() 0 and

[8w/ap] o = 0 we find that &a - f"(0)o(AP) 2 , resulting in either real or purely
imaginary values of (Ap)



The plasma mode also exhibits a continuous transition from slow waves to

fast waves unless there is a branch point where the phase velocity equals the
velocity of light.

In Figs. 3 and 4 dispersion curves are shown for the plasma mode with two

different surrounding materials, viz. vacuum (e = 1) and Pyrex (er M 4.5). Inr

these two figures the diameter ratio r /r2 is kept constant and the dimension-

less parameter (,pr/c) is varied. To the right in each figure there is a dot-

dash curve representing the quasistatic approximation, obtained by neglecting

i = - grad V - r"At

For a given P-value the exact solutions yield lower frequencies than the

approximation. When P - co the exact and approximate solutions converge. The

figures also show that the approximation is good only for relatively low plasma

densities. Fig. 5 shows a set of dispersion curves where w p r/c is kept constant

and the diameter ratio has been varied. Together Figs. 3-5 show that the curves,

and especially the negative dispersion, are strongly dependent upon the geometry

and the plasma density. The magnitude of the group and phase velocities in the

region where negative dispersion exists is Ivf! - v/10 and 1
Vgj 1 v/100,

Using the notations in Fig.. 2, we define the relative bandwidth for the

range of negative dispersion

= 2 W_ (4)
0

We can see from Figs. 3 and 4 that for a given geometry the relative bandwidth of

the exact solutions has an upper limit given by the relative bandwidth obtained

by the quasi-static approximation. In Fig. 6 this maximum value is plotted vs.

the diameter ratio; we find that the negative dispersion disappears when

r /r 2 - 0.45 and has a maximum when r /r 2 -- 0. Fig. 6 also shows that a higher

r gives a larger relative bandwidth.
r

Ill. Plasma column surrounded by a two-layer dielectric enclosed in a metal tube.

The waveguide system of Fig. lb consists of a central plasma colum surround-

ed by two different, concentric, homogeneous dielectrics inside a metal tube. The

characteristic equation can be written in determinant form
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A1 A A3 

A4 A5 A6  = (5)

A7 A8 A9

where £ *p 2rc2,

I [Q 2 r ,2F2 1 1 1  _2Q 1 21 T2 1 11 21
~rQ

A [ Q -2 r 2 F - - r 2 FG _p rP. r~p G y
2 L2 1 21 11 2 1 21 21 .2 111 T2 111 21 21-~rQ

A 1 W [ 2 1~

A 1

"21

A [F 2r2  - p F l + 21 Fz r1 T r 3 J22

1 Y21 (F11rl - G21r)J22 Tr3Y221

•A6- [2pv1 JQcJ21

r -Fj2A7 -.L2- (coF22r. Tr3)(F11rl - 2r,) -p 2

2 222 2 3 1  J21 J22  PY221

= cJ21 2 32

The following abbreviations have been used:

F I -1J1, and similarly for F and F
11 kIr J1i 21 22

Y I
G1 l Y21 and similarly for G
21 k 2 r1 Y21  G22

W Yi- 21 21 (Wronskian determinant)21 J2 Y i



V= J22Y2 1 -J21Y22

V '2

2  J21Y2 - J22Y21

J33 Y32 - J32Y33

I k r 323
T 3 = 3 .JhY32 -J32Y33

1 J33Y32 - J32Y33

T2  k3r3 J3 3Y32 -J3 2Y33

Q = _n k

r I Lkh 2  k 2 1

2 k1

P a_ 2I

3 2
2

k= ko( g ° 2) "k 2 2

k ko(1- 2 ) -

3 o

k w/c
0

= PA 0

The short forms (J1 ' J2 1 ...) are defined in the same way as in section IT.

The principal behaviour of the dispersion curves given by eqs. (5) is the

same as for eq. (2), see Fig. 2. What was said about the plasma mode in section

II is valid also for this case except that the position of the asymptote is now

given by P + e = 0. This means that only the inner dielectric affects theP g
asymptote and, as the cut-off frequency is less dependent upon the inner dielectric,

a proper choice of dielectric material may give rise to negative dispersion.

Solutions of eq. (5) are shown in Figs. 7 and 8 for e = 4.5 and C = 1.

This corresponds to a plasma column inside a glass tube. In Fig. 7 the dot-dash

curve again represents the quasi-static solution. Calculations show that as long as

w r 3/c < 1, the approximation is in good agreement with the exact solutions,

except for small 0-values. In this case (Fig. 7) the maximum relative bandwidth

(33 %) is considerably larger than for glass only (15 1) or vacuum only (10 ).

~ . ~
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TV. Plasma column surrounded by an infinite homogeneous dielectric.

The waveguide system of Fig. Ic consists of a plasma column in an infinite

homogeneous dielectric. The dispersion equation is

h In(hr) c '(hr ) InOir
I(hr) hr r,) )hr I(hr

L1r 1  n 1l 2 1 a 21 11 nIlI

1 0 2 r1 )21 2 2[ 1 1

where I, K and their derivatives are modified Bessel functions of the first and
n an

second kind and

S o(2 _ 7)
h= k (-2

2 0 r

k =w/c
0.

PA0

Solutions to eq. (6) are shown in Fig. 9 where the two different families of

curves correspond to different c The dot-dash curve represent the quasi-staticr"

approximation.

A comparison between Figs. 3, 4 and 7 and Fig. 9 shows that the surface-

wave mode in the waveguide systems of Figs. 1 a-b is closely related to the

surface-wave mode on a free plasma column - as was stated in section 1.

Experiments

Measurements of the dispersion have been made, using the experimental set-up

shown in Fig. 10. The waves could be excited at either or both ends of the tube.

Different methods of coupling microwave energy to the plasma mode have been

studied experimentally by KERZAR (1963). With reference to his results we chose

a simple loop that could be turned around in the azimuthal direction.

The plasma was the positive column of a low-pressure hot-cathode mercury

discharge. The, indirectly heated,oxide cathodes were shielded from direct ion

bombardment by a metal screen and the transition from the cathode region to the

useful plasma column was made long and smooth. This arrangement gave very small

cocillations of a low frequency (10-100 kHz) and the discharge seemed to be

stable in a relatively large temperature interval (10 "C - 50 0C). During the

measurements the temperature of the coldest wall of the plasma tube was kept



49.

constant at 20 °C :t 0.5 °C by means of forced cooling and a heat exchanger. Thus,

the estimated neutral gas pressure was 1.2,10- 3 ma Hg. The current through the

plasma tube was between 250 - 500 mA and stabilized by a regulated power supply.

The. dimensions of the plasma tube were L = 750 mm, r, = 6 rm, r 2 = 7.5 = and of

the surrounding metal tube r 3 = 30 mm or 16 m. The measurements were made at

frequencies in the range 900-1400 M4z.

To measure the propagation constant of waves propagating in a structure there

are basically two different methods (i) analyzing a standing wave pattern or (ii)

analyzing an interference pattern. The different patterns were in this experi-

ment plotted on an xy-recorder.

The plasma density was measured by a microwave-cavity method developed by

HEDVALL (1963), which takes the surrounding glass tube into account. Fig. 11 shows

a typical example of the plasma density plotted against position along the plasma

column; the density is not constant along the tube. The influence of this density

gradient upon the interference patterns was a continuous change of wavelength

(phase velocity) along the tube. This density inhomogeneity has been observed

earlier by von ENGEL (1955), AGEI1, KERZAR and NY(MEN (1963), and Mic ir .IN. (1963)r

The experimental results are shown in Fig. 12 together with theoretical

curves for i) a plasma column surrounded by vacuum, (ii) a plasma column

surrounded by Pyrex, (iii) a plasma column surrounded by a two-layer dielectric.

The figure shows that the agreement between theory and experiments is good when

the glass tube is taken into account. The measurements, which were made at diffe-

rent plasma densities (0.5 < w r3 /c < 1.5) and with different geometries Cr3 -

30 mm and r3-= 16 mm), were in all cases in good agreement with the theory.

When the phase velocity was equal to or larger than the velocity of light in the

surrounding glass tube the waves disappeared and no measurements were possible.

At low frequencies another limitation prevented measurements, viz. the symmetrical

mode that was more strongly excited and much less attenuated than the dipole mode.

If we consider the theoretical curves (fig. 7) in connection with the axial

inhomogeneity in the plasma density (Fig. 11) we find that there should exist a

cut-off phenomenon when waves are propagated towards a lower plasma density (in

this case from anode to cathode). This cut-off was clearly visible in the

experiment.
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Fig. 2 The principal behaviour of the propagation constant as

a function of the frequency. Solid lines indicate real

solutions and dashed lines complex solutions.
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Fig. 6. The maximum relative bandwidth as a function of the

diameter ratio. The relative bandwidth is defined in

Eq. (4) and Fig. 2. Two curves are drawn for different

values of e
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Fig. The propagation constant as a function of the normalized frequency for the
surface-wave dipole mode in a waveguide system according to Fig. 1. c.
Curves are drawn for 2 different values of t with a) r,/c as a parameter.

The dot-dashed curves are the corresponding quasi-static approximations.
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IV. PLASMA RESONANCE IN A GERMANIUM ROD

1. INTRODUCTION

The study of cyclotron resonance in semiconductors

has yielded much valuable information on their energy-band

structure 1 ,2 ,3 . In order to increase resonance detectability,

a high carrier concentration is desirable, but this introduces

magneto-plasma resonance effects as the carriers oscillate
4,5

collectively . Earlier, pure plasma resonance has been observed

in flat samples of semiconducting material, where it is exhibited

in a transition from a highly reflecting to a transmitted state, as6
the frequency of the incident wave is varied through resonance 6

After the investigation described in the present paper was finished

(Dec. 1961), it became known to the author that magnetoplasma

resonance absorption in small Ge specimens in a constant field

had been measured and successfully interpreted theoretically by
7Michel and Rosenblum. They obtained good agreement between

electron density determinations with Hall effect and with magneto-

plasma resonance absorption. In the present paper the author

investigates plasma resonance absorption with zero static magnetic

field for a different geometry, i.e. a thin, semiconducting rod

situated in an inhomogeneous field. This work is connected with

similar studies on gas discharge plasma8 and metal plasma9

carried out at this laboratory. The agreement between density

determinations with Hall effect and with plasma resonance absorption

turns out to be good also in the present case of a rod.
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2. THEORY

The theory presented here describes the effect on the wave

propagation in a rectangular wave-guide that is exerted by a thin trans-

verse plasma rod perpendicular to the electric field vector. The wave-

guide propagates the TEt 0 -mode only and the plasma is rather bsy.

The configuration is shown in Fig. 1.

z. 1.
Plasma permittivity

The plasma rod is treated as having an isotropic permittivity

(relative dielectric constant) given by the formulaI .

J2
(3 + I

where S = dielectric constant of the crystal lattice,

= plasma frequency,-P
= relaxation time of charge carriers in the plasma.

We consider an n-type semiconductor of cubic symmetry in

equilibrium at low temperature. Thus, we may neglect contributions

from positive-hole conduction and thermal motion of the electronz. The

cubic symmetry is sufficient to make the permittivity a scalar in spite

of the anisotropy of the crystal. Thus, the permittivity formula will

hold-for n-doped2Ge and

2 e n0

where n 0 density of conduction electrons

m*= effective mass of conduction electrons.

There has been some confu ion in the past about the so-called
10Lorentz contribution to the local electric field acting on the electrons

The inclusion of such a contribution in the formula for thet-Irmittivity

is discussed in the Appendix.

-
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2.2.

Plasma rod in a waveguide

The theory of microwave scattering by a plasma rod across

a waveguide is given briefly in tb.App.n . A thin rod of plasma, that

is lossy, but not too dense, is seen to be adequately described by the

equivalent lumped circuit in Fig. 2.

The lumped elements are given by the equations

2

- £ 0 irar0 (1

rI - +-T ....
b

(+2 0b0

2

C 0ar
p 0 0

r.(C + 1)2  b2

2rp 0 O a
0

and the characteristic admittance of the waveguide is given by Eq. (57).

The displacement current due to vibrating lattice electrons

flows through CV The series resonance circuit (C, L, r) carries the

convection current of free electrons. Both these currents 3hunt the

transmission line. There are thus two different resonances in the

system: one series resonance, wI = %r- /L-C, giving a high shunt current

and a reflection maximum, and one parallel resonance, giving a low

shunt current and a reflection minimum, a) 2 =4(C + C)/LCC 1 , where

UZ > 
W1 .

Expressed in physical quantities one has from Eqs. (2) - (4):

((/ s)2 (C + 1) (6)

S(w/w1Z = (s - 1 (7)

The series resonance, u),, is called plasma resonance and is

pronounced only when the rod is thin and the damping is not too high.



The validity range of the equivalent circuit of Fig. 2 is given
by four conditions:

1. The rod diameter shall be small compared to the waveguide

height:

(2ro/b)2 << I

2. The rod diameter shall be small compared to the free space

wave- length:

(21rol) (9)

3. The rod diameter shall be small compared to the wave-length

in the rod (or the skin depth, if the waves are evanescent):

I 3 I (2,rrol) 2 << 1 (10)

4. The electron relaxation time must not be too long in order

that the dipole field shall predominate as is assumed. This

is expressed in the following condition:

(ro/X)z.2 Z(C + 1) (ii)

3. EXPERIMENTAL SET-UP

In order to observe plasma resonance in a semiconductor it

is imperative to reduce the damping by choosing the semiconducting

material and the experimental conditions carefully with the aim to get
an (a)I )-value as high as possible. As a1 and co are coupled by the

resonance condition (6), a high w, implies a low resistivity semicon-

ductor, which, in turn, would have a small -r -value. A decrease in

the temperature will increase T, but at the same time the electron

density and therefore ap and toI will decrease. The best choice avai-

lable appeared to be a Ge-rod, doped with Sb so as to have a room-

temperature resistivity of 6.55 9 cm, and to put it in an 8 mm, wave-

guide at liquid hydrogen temperature. This should give an (Cr )-value

of about 3.

I ,
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An analysis, based on the equivalent circuit of Fig. 2, shows

that the reflection from such a rod is almost unaffected by the passage

through plasma resonance. Therefore we chose to observe the ab-

sorption resonance, which remains pronounced down to a) I- 2. In-

stead of varying the frequency, a, so as to pass through resonance, we

varied the plasma frequency (electron density), by changing the rod

temperature. The electron density covers about three octaves, when

the temperature is increased from the triple point to the boiling point

of hydrogen (13. 80 K to 20.4°K). This manner of changing the density

of free electrons has the advantage that thermal equilibrium is conser-

ved. The density is approximately the same everywhere in the rod.

The experimental set-up is shown in Fig. 3 and described

below:

The microwave power, 46 mW at X = 8.65 mrr is fed from

a klystron through a calibrated attenuator to the section containing the

Ge-rod (cross-section 0.45 x 0. 60 mm). By means of a shaft, the rod

can be rotated manually through 1800 around its axis from outside the

cryostat. The line is terminated by a matched load and the waveguide

section inside the cryostat is filled with helium and it is pressure iso-

lated from the outside by means of individually matched mica windows.

The cryostat has an outer container with liquid nitrogen and

an inner container with liquid hydrogen. The inner container can be

evacuated above the hydrogen surface to lower the temperature and

can be filled with helium gas to avoid air being sucked into the cryostat.

The resistance of the Ge-rod has a large negative tempera-

ture coefficient. Thus, the microwave power absorbed by the rod can

be measured by connecting the rod to a sell-balancing thermistor bridge

(Hewlett-Packard power meter). The rod is shunted with a variable

resistance so that the bridge can be balanced for different rod resis-

tances without changing the built-in bridge resistance of the meter.

When the shunt resistance is known, the power absorbed in the rod may

easily be calculated from the reading of the power meter.

The sel-balancing bridge thus keeps the rod resistance

constant and consequently also the density of free electrons. The

surrounding hydrogen bath is kept at a temperature just below that of

the rod. The calibrated attenuator is used to regulate the microwave

power, so that the power meter shows a relatively constant deflection,

in spite of the variations in the absorption coefficient with temperature.
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4.

EXPERIMENTAL RESULTS

4. 1. Measurements

As described above, the ratio of the microwave power absorbed

in the rod to the power incident on the rod - the absorption coefficient -
was measured as a function of the rod resistance. The experimental

results are plotted in Fig. 4.

The absorption coefficient shows the expected resonance beha-

viour. The points in Fig. 4 are measured with the rod oriented as shown

in Fig. 5, which gives maximum absorption when the rod is rotated.

Technological difficulties made it necessary to use a rod with a rectan-

gular cross-section instead of the circular one, on which the theory is

based. Thus, the isotropy of the permittivity could not be checked but

the measured ratio, 0.8, of the variation of absorption with orientation

of the rod is not inconsistent with the assumption of isotropy.

4. 2.Comparison with lieory

The dimensions of the rod (length, I = 11. 2 mm, cross-sectixr

S = 0.45 x 0. 60 mm 2 ) determine the product (noRj±), where R is the dc

resistance and .L the carrier drift mobility in the rod

(noRj)= (12)

2
2 0 n o  T

As 0) e 0  and ji = one has
p C m* m

(P) 2  1 1 21500= S.- .' -= (- (R in 9) (13)

An analysis of the equivalent circuit in Fig. 2 shcws that,

when up is varied, the absorption maximum occurs at
p

0)2 1 (14)

(CD T)

which should be compared with the plasma resonance condition of Eq. (6).

In the derivation of Eq. (14) the variation of r with temperature can be

neglected as long as (w'r) is large enough to give an observable absorp-

tion resonance.

'Iq



Finalij for e = 16, Eqs. (13) and (14) give

1265'"- Z -1 (15)
res

From Fig. 4 we find the rod resistance at the absorption

maximum to be

R =465Q
res

Eq. (15) now gives

(r)r =2.53

=1.16 - 10-  sec
res

There is a slight inconsistency in this derivation, as the

relaxation time in Eq. (13) has its dc value, while the relaxation time

in Eq. (14) should be taken at the microwave frequency. These two

values are not necessarily identical. As (Wr) >> 1, Eq. (14) is almost

iLependent of r, which means that Eq. (15) gives the dc value of the

relaxation time.

Germanium has ellipsoidal energy valleys in the conduction

band, so thatik

II
+-), (16)

where* m// = 1. 58 * rn and i -_ 0.082 ,m have been determined from

cyclotron resonance measurements . Eq. (16) is valid if the relaxation

times along the valley axis and perpendicular to it are identical, which
13has been shown to be a good approximation for Ge. Thus, m*

0.12 m from Eq. (16) giving

= 17.0 rn/V • sec

n o  3.3 . 1019 m- 3

at the absorption resonance, which occurs at about 16°0K. These values

are in good agreement with Hall-effect determinations of the mobility

in similar Ge samples
1 4
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To establish the agreement between experiment and theory
further, the resonance line width will now be investigated. A Q-value
of the resonance is defined:

Z(axr) (~L W)
Q rea p e (17)

where index I and 2 refer to the points where the absorption has half

its maximum value.

From the equivalent circuit in Fig. 2 one gets

" f4(a))2 + 3 - 4(an)res 1 + (0i) e
- (")e"6 (18)I = res - e e e

1+ ( )2~zeres

This expression is valid only when the absorption coefficient

at resonance is much smaller than unity. It is assumed that

)= ( ) res (1 + 6) and (an) = ( ' ) res ( - 6),

where 6 << I and positive.

If (r) >> 1, Eq. (18) is simplified:

CDT (19)

For our case, Eqs (13) and (17) yield

2/Rr(0Q = I  (20)

Fig. 4 gives R, = 595 and R = 320 1 so that

Q = 2.98

If it is assumed that 6 = 0. 1, meaning a - 10% variation of
r with temperature within the resonance width (cf simihr Ge specimens

in Ref. 14), Eq. (18) gives (an) res = 2.22. This value, which should
be valid at the microwave frequency, is about 10% lower than the dc
value computed from Eq. 15. The accuracy is not good enough to
warrant any conclusions, but one should expect the rf value to be lower

than the dc value.

Finally the maximum value of the absorption coefficient, A,
will be considered.



The equivalent circuit in Fig. 2 yields

A(O).
(I + A(0)/2)Z(1

where (2/b) (2Tr0 1X)(

A(O) = _._I -_ _ (Z2)(C + 1) - ()L/Za)Z + ()r - wr]

X " 8.65 mm and a = 7. 1 mm and b = 3. 55 mm are the dimensions of

the waveguide.

From Fig. -4-we-obtain the value

A =0. 067max

and this together with the calculated value of (an) enables us to assign

an equivalent radius r 0 to the rod:

I) c r =-2.53 2) i)y" = 2.22

2r 0 = 0.76 mm Zr 0 = 0.81 mm

A comparison between the equivalent rod with diameter

0.81 mm and the actual rod with rectangular cross-section is made in

Fig. 5.

It is now possible to determine the validity range of the

equivalent circuit for the Ge-rod used. A plausible value of the equi-

valent rod diameter is chosen.

Isi

t4
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2r =0. 65 mm, a =2.22 and f) 2 =800

2
1 (2ro/b) = 0. 034 and Condition (8) is thus fulfilled.

2. (2 r 0 /t) 2 = 0.056 and -"- (9) i t

23. 31 (Zro/) < 1, if R > 250 0. The minimum value of

S31(Zrro/A) 2 is 0.37. which occurs atR= S30. Cond.(10)

is thus not fulfilled for R < 2500 and only poorly fulfilled

for R > Z500 (cf., Fig. 4).

4. 2 +-i 1) = 4. 9 and Condition (It) is thus fulfilled.

In view of the fact that Condition (10) is poorly fulfilled for

our rod, the agreement with the simple theory is surprisingly good.

The determination of (wT)res from R res, using Eq. (15), or
from Q, using Eq. (18), is not influenced by an inclusion of a Lorentz

contribution to the local electric field acting on the free carriers (see the

App., especially Eq. (24)). The drift mobility would be given by
(2+ e) e-r(--t-- e and take a value 6 times larger than before, and the

casc is exactly the same for the drift mobility determined from a Hall

effect measurement. Those two measurements together are thus not

sufficient to settle the question, whether a Lorentz term should be

included or not. As mentioned in the App a pulse drift measurement

is needed combined with either a plasma resonance or a Hall effect

measurement. Such a comparison with the directly determined drift

mobility1 5 shows that the Lorentz contribution is negligible.
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Thero is no indication of discrepancy between the simple

theory and the observed width and-shape of the absorption resonance,

as in the case of polarized resonant emission from-a mercury discharge .

This ma-Y be due to the fact that the theoretical idealization of unifrm

plasma density and negligible temperature velocity is much closer to

the truth for our Ge rod than for a gas discharge in a glass tubing.

Substitution of (mv) from Eq. (15) into Eq. (13) shows that

w and therefore also the electron density is directly determined by the

rod resistance at resonance. As already observed by Michel and Ro-
senblurn7 , the plasma resonance absorption thus could be used to de.

termine the charge carrier density in semiconductors directly without

recurrence to Hall effect measurements with their uncertainty as to

the theoretical value of the ratio drift mobility to Hall mobility. The

application and accuracy of the method are limited by the low 0-values

attainable.

I'

1*i
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APPENDIX

-eA.lklko ctric field

There is a theoretical possibility that the local electric field,

Eloc, acting on the conducting electrons, is different from the macro-

scopic field, E, in the crystal. In this general case the permittivity

for the crystal with plasma is

E1 -i- (0 ..- )
C 3 =I -F) -'V1 (23)

(I + -)

At the lattice points in a crystal of cubic symmetry there is a

local field
1 6

E E (24)

This field could possibly be the effective field for the conduc-

tion electrons also. There are, however, strong reasons to discard

this assumption. It would mean that the theoretical value of the ratio

drift mobility to Hall mobility should be multiplied by the factor(A± - )

in contradiction to the general agreement between measured ratio

values for Ge and Si and the theoretical values based on El. = E. The

drift mobility can be measured directly by the pulse drift method and

the Hall mobility by a Hall affect measurement. It should be observed

that = 6 for Ge.

It is also possible that the local field is influenced by the dipole
moment of the vibrating conduction electrons themselves, as has been

1-7
proposed . In considering this possibility we do not include the effect of

a contribution from that source to the local field at the crystal lattice

points. We get

1/3(m /)2
o= [I +. E (25)

3(-f)2

63 3 {C P . (26)[I (C /D)Z + _I

Thus Re(c 3) < 0 could never be reached for an g larger than 3.

This is contradicted by the observed rapid change from transmission to
64total reflection in heavily doped germanium in the far infrared , which

is believed to be a consequence of passage through Re(C 3 ) =0.

4
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ji0Z.'.piP4.ircuar plasma rod across a waveguide

The eaact treatment of a circular plasma rod across a wave-

guide is indicated below (see Fig. I), but only a limiting case valid for

a thin rod with comparatively short electron relaxation time is worked

out completely. The fields have the time dependence exp(ior) and the

temperature is so low, that the temperature-induced electrostatic field

solution in the rod may be neglected.

Only the field vectors in the axial direction (s-direction) are

given, as the transverse components are easily deduced from the

formulas:

2 Et OE A
Et -7t ( ) +  L 0 -(z x V t Hz) (27)

2 i(
2 ) ,8H/32~~ (t -t=.-- [a+ )(It x vt E,) + Vt (-gzT) (28)

where p= ()2- (1)2

A.
z is the unit vector in the z-direction. Index t stands for "transverse"

to the z-direction. Formulas (27) and (28) are applicable outside the

rod; inside the rod P is replaced by k, defined as

The TE 0 -mode, incident in the y-direction and arbitrarily

normalized, has the form:

E(i)= o (29)
z

H(i)= cos ( ) exp (-iy) (30)

Using the expansion exp(-iPy) = 2 J (Or) exp(-inqT), where
n n

y = r * sinp and the sumnnation is from - colb + aD, changes this into

E(i) = 0 (31)
z

11i o(!) J (Or) exp(-inq))(2
5 n a a

Although E (i) = 0, the electric field inside the rod and the scattered

electric field will have Ej 0. This field component is excited by the

longitudinal current in the plasma rod induced by the Hy-component.

Inside the rod we get

! :



E) ;sfi4(!) A 3 (kr) exp(inV) (33)F

uz (aos z) C 3 (kr) exp(-inq) (34)

If the walls at x = + b/Z were moved out to infinity, the

scattering fields outside the rod would be represented by simple cylind-

rical waves

E(2)= Z sE(-) B H(Z)(Pr) exp(-inqp) (35)
z n a ni n

H(2) = n: cos(-.) D H()(Pr)exp(-inp) (36)

The walls will introduce mirror images of the rod and images

of images in an infinite array. Thus, the boundary conditions at the

walls are fulfilled by the complete scattering fields:

E(2 = ~j~(!) B H(2) (r) exp(-inq ) (7

Hi( ) "  m cos( Dn (P ) C~mexp(- in') (38)

where rm and q) Mare defined in Fig. 6. It should be observed that

A =-A B =-B-n n -n n
•C =C D =D

-n n -n n

For a point in the waveguide far away from the rod, yI >> b,

it is possible to deduce the following asymptotic expressions:

E (2)  0 (39)z

H() 2 I cos(!) (Y)n D exp(-iP Jy) (40)z n a 7) n

which are valid as long as the waveguide can propagate only the TE 0-

mode. The scattered wave may thus be described as one back-scatte-

red wave giving a voltage reflection coefficient

zr - (_l)nD (41)

and one forward- scattered wave, which added to the incident wave

gives a voltage transmission coefficient

T=(I +2 ZD (42)

r and T are referred to y = 0 (a plane through the centre of the rod),

and give a complete description of the effect of the rod on the trans-

mission line. The D can be determined from the conventional boun-r cn
dary conditions for the fields at the surface of the dielectric rod.



P

77

(Pro)2 << I and Jkr 0 , 2 << I

The case (PrO)Z << I and Jkr 0 2<< I will now be considered

in detail. As a zeroth order approximation, the contribution from the

image fields to the fields at the rod boundary is neglected. We get to

the lowest order in (pro):

fon 0D (44)
D(o) r((O/Pc)z (,=)z. 2n 3 n (44)n ='n- I). n, + -T for n > 0; D~n=D n

The values of D n are true at Re(c 3) 0 -I only if

Mr0li2a ( 2) (4)
IIrn(3)I N R%

For a semiconductor this is equivalent to the condition

)<< b(c + 1) (46)

ro 2

Only D1 and D- will contribute to r and T to the lowest

order in (3r 0 ):

r(") = - 1r (02 Z ) (47)

T(°)= i+r(°) (48)

The restriction on Im(c 3) in Eq. (45) is equivalent to stating

that I r (0) 1 << I is a condition for rz r (0) to be valid. A further step

in the approximation procedure will replace this condition by the less

restrictive

A >3)!. -7 (c) (49)

which gives: (arr) < 2 Z (50)
wro/ C()

The new condition guarantees that still only the dipole mode,

Di and D- 1  will contribute to the reflection coefficient at plasma

resonance, Re(c 3 ) = -1. If 1Im(c 3 )I is further decreased, at first the

quadrupole mode, D2 and D 2 , and later the sextupole mode, D3 and

D 3 , and higher modes contribute to the absorption and reflection at

plasma resonance.
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In this first order approximation, the image fields are added

to the fields at the rod boundary and to this order of approximation:0()
D(1) .- (51)

which gives

rr(077 (52)[I - rW° ]

T(i) = 1 + r ( 01 , (53)

The result is thusr (o)
rw (54)

[[ -r t)]
Tz [1 +r]z 1 (55)

valid for (pr 0 ) << 1

Jkr 0 jZ<< I

with the addition of condition (50).

The form T = (1 + r) tels us, that the rod constitutes a lumped

shunt element in the waveguide. It is easily observed from Eq. (54),

that the normalized shunt admittance is given by

Y =-zr(0 ) (56)

where the characteristic admittance of the waveguide, Y is given by

Using Eqs. (47), (1) and (57) the shunt admittance of Eq. (56)

can be written 2
s0 a 0 r. - 1 (58)Y = b [ 4 - " ( C + 1 ) Z + im ( a + 1 ) r ( C + )A~.t2Lj ok.±4 +2_

P P

A suitable equivalent circuit description of the rod in the

waveguide is now obvious and given in Fig. 2 with the lumped elements

as in Eq. (Z) through (5).

V'
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o i" f, x 10 x

Fify. 1 Thin plasma rod mounted across a rectangular

waveguide parallel to the broad walls.
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y

Fig. 2. Equivalent lumped circuit describing a thin plasma

rod across a waveguide.
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V. MAG E -PLASMA RESONANCE

Introduction

If a metal- or semiconductor-plasma sample is impnersed in a d.c. magnetic

field, and irradiated by an, electromagnetic wave with a frequency much less

than the plasma frequency and the gyrofrequency, then the plasma sample will

be resonant for certain values of the frequency. These resonances, which are

commonly called magneto-plasma resonances, have been observed experimentally
1,2) 3in both metals and semiconductors 3 . At our laboratory we have studied

the associated propagating waves in a long semiconductor rod.

The resonances observed can generally be divided into two groups:

1) the main resonances with different mode number in the direction parallel

to the magnetic field, and 2) the secondary (or satellite) resonances,

corresponding to different transverse mode number.

The main resonances can be fairly well explained by assuming plane waves

propagating along the magnetic field. (This simple approach is valid if the

transverse dimensions are much larger than the wavelength along the magnetic

field lines.)

The secondary resonances (which yet have been observed only in metal

samples) can not be explained by the plane-wave approximation. To obtain a

theory for these, one has to solve the proper boundary-value problem. This is

done in an approximate manner for circularly cylindrical samples in the theory

below.

Theory

The ordinary theory for a magnetized plasma, describes the plasma as an

anisotropic dielectric medium, having the tensor dielectric constant:

C i -je 2  0

[e] jc 2  E1 0

0 0 3

where

1 r Wi ( 2 2()I er(Wo - jV) 2 -

C
2

2 W - 2

3 r to(w - jr)

Iq
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and e r static dielectric constant

w = signal frequency, w = plasma frequency

wc a gyro frequency and v = collision frequency

provided the d.c. magnetic field coincide with the z-direction.

The solutions of Maxwell's equations for plane waves give two possible

normalized propagation constants

2 )2 c ±(2
1P = (c/Vph 1 2 (2)

where Vph = the phase velocity

and c = velocity of light

If now W It - j vi and w C rW (as is generally the case in the
c ~ p r c

* magnetoplasma resonance experiments) only the left hand circularly polarized

wave can propagate and the normalized propagation constant can in this case

approximately be written:
2

2 __c2 + WV(3)
r w*o

For a metal plasma w2 Awxa and hence the main resonant frequencies
p c r

are

W E - E p ; p = 1, 2, 3 ... (4)
res 2 z

WP

where z = length of the sampre in the d.c. magnetic field direction.

and p = axial mode number.

We will now consider a circularly cylindrical plasma sample, with radius a

and axial length z, and with the d.c. magnetic field parallel to the axis.

According to AGDUR4 ) the z- and q-components of the fields inside the plasma

(r < a) can be written (omitting the factor exp[j(wt - PZ nq)) ):
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Ez AJn(mIr) + BJn(m2r)

-jcBz = ADIJn(mlr) + BD2Jn(m2r)

S n 1 2n 2

E 0r A[cJ(mjr) - a2.'(mr)] +

m2r
+ BLP1J Cm2 ) -- r 2Jn(i 2r)) } (5)

inlr
-jeB : _o IAt T(r) -c J(mr)

n r
+ B[%3J (m2r) + - n 'r)1}

2 3 22 P0 [ ( m - l +)( m r " m2 JI

2 , 22
where ml, 2  T 2 ) + E:3 2-- +

2 C22 3 E2 j2 2)
_ ([(C€- - 2 )(1 - T- 2] 4 23

o f W/c; T =c/Vp

and 2
312 m1.2

D =- - (C --1,2 e C~ 1 2
2 1 P0

al, T '21(C -  2 + C 2

° 11 1 = "(: 2) 21,2

a2' P2 -2r - (c, - T2)D1,2

cc3' P3 = 622 + "(Cl - 2)D1,2

2 _) ( 2Da4, 4 = 2 -'c1( 1 - 2 1,2

2)2 2Q = (c1  - C 2

Jn is the n:th order Bessel function and Jn is its derivative. A and

B are amplitude coefficients.

These fields must satisfy certain boundary conditions at the plasma boundary

r w a, which gives the dispersion relation. We will here distinguish between

two cases: A) the plasma surrounded by air, which applies to most experiments

with metal plasmas, and B) the plasma surrounded by a metal tube (d - 00),

which applies to most experiments with semiconductor plasmas. These two cases,

which will give different boundary conditions, are treated separately below.
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Case A: Plasma surrounded by air

In this case the fields outside the plasma (r > a) are assumed to be the

ordinary slow wave vacuum fields in cylindrical coordinates, i.e.:

Ez = CKn(Pr)

-jcB= EK n (r)
(6)

E CKn(Pr) + EKn (Pr)

-jcB -CK' (Pr) - -S-E (Pr)T n Pr n

where P = po

K and K1 are the modified second kind Bessel function of order n and itsn n

derivative. C and E are amplitude coefficients.

Matching the fields inside and outside the plasma at the boundary r a

requires that the following determinant is zero:

1 1 1 0

D0 1D1  D2 O1

= 0 (7)
1+ Y1 Pl' P2x2  -Q/T QK/

3 + a 4X1 33+ 34X 2  QKJT -Q/T

SaJ'(n a) ma J'(ma) ['(Pa)
wee1 n 1 2 Jn 2nwhere X1 = '- 2 = Jnma and K =B

1 n Jn(ma) 2 n Jn(ma) n Kn(pa)

if W 1w - ivJ and w --wwi, which means that ]e[ Je2J 1cJi,
2 i ass-me- 2 t

and if further T is assumed to be near the plane wave solution (i.e. - of the

order of 1c2I) then:

2 2 E3m P 1 F, I l 11 
(8)

2 2 1
2- 4 F

where + 2/(rr2 )

1'
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With these approximations one can show that an approximate solution to Eq.

(7) is

Jn(m2a) = 0

or

2 nm (9)

where xnm is the m:th rooth of Jn(x) = 0 (n $ 0).

To obtain a simple expression for the resonant frequencies of a plasma rod

with the length z, we approximate 2
l2 2  

22 2 1 2 2 '2)

This gives the resonant frequencies:

c nc 2 2 mnWo = - i p2( , -+) (10)
res 2 2 pna

p

This equation gives both the main resonances (n = m = 1, p = 1, 2 ....)

and the secondary ones (p fixed and n, m = 1, 2 ..,).

If (x11 z)/(pna) -; I then the plane wave approximation (Eq. (4)) gives the

main resonances with good accuracy, and the secondary resonances will be very

close to the main ones. The secondary resonances will only be detectable if the

Q-values of the resonances are of the order of f /2Af or larger, where f is the0 o

main resonant frequency and Af is the frequency spacing between the main and the

first secondary resonance.

Case B: Plasma surrounded by a metal tube.

In this case the fields must satisfy the boundary conditions:

E = E = 0 for r = a
z (

With the expressions for E and B in Eq. (5) these conditions lead to thez T
following characteristic equation determining the propagation constant:

XIa2 - X2 P2 ' -1  (11)

where X and X are given in Eq. (7).
1 2

If we introduce the same approximation as in case A, Eq. (11) can approximate-

ly be written:

an (m a)
-2- jn 2a) n if n .Iml al (Ila)
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The solution to Eq. (Ila) is:

Jnfl (m2a) = 0

or
m 2a x Xn+l,m

where x is the m:th rooth of J (x) = 0; n V 0. From this approximate
n+1,m Jn+l

equation one can derive the propagation constant T:

= C1 - G + : + + 2G(c - r ;(
(12).2

where G :-1i "n. _,ml:

Experiments

We have at our laboratory made an experiment with a semiconductor plasma

in a strong magnetic field. The semiconductor (at liquid nitrogen temperature)

was immersed in a circularly cylindrical waveguide, the axis of which was along

the magnetic field lines. The purpose of this experiment was to measure the

propagation and the attenuation constants of a circularly polarized wave in the

semiconductor, as a function of the magnetic field strength. The experimental

conditions were such that the Dlane-wave approximation could be used. In this

case the ordinary magneto-plasma theory gives the propagation constaSt (Q) and

the attenuation constant (a) of the extraordinary wave (see Eq. (2)):

2a

r- Wf rT
c Pr r ww.L-- c _!

a= -- _p - - (13)
2 UJ _. W "

r 
+ 

WJW

These formulas are valid if 'Ac C w - jVj. The ordinary wave is strongly

attenuated and will not be considered here.
21 3

The semiconductor used was indium antimonide with N = 1021 electrons/
,

2
p = 30 m /Vs and e = 16. With a signaifrequency of 35 GHz and a magnetic field

strength of I Wb/m (= 104 Gauss), the above formulas give 0 a Po-10 which

corrensponds to a wavelength in the sample of 0.87 on. The corresponding value

of a is 104 r-, i.e. an attenuation length of about 1 ca.
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The experimental setup is shown in Fig. (1). The incident, linearly

polarized TE 1 1 -mode in the empty waveguide can be divided into one ordinary and

one extraordinary circularly polarized wave. Only the extraordinary wave can

propagate through the semiconductor and reach the magic T. This signal interferes

with a signal passing through the attenuator and the directional coupler.

The magnetic field is-obtained by discharging a capacitor through the
4solenoid around the sample. The field reaches its maximum value (Z 1.3-10 Gauss)

in 0.005 sec.

An oscilloscope trace of the detector output as a function of the magnetic

field strength, is shown in Fig. (2). The peaks of the curve are related to the

wavelength in the sample, but it is not possible to get an absolute value of the

wavelength; only the relative change of the wavelength can be measured. However,

by taking one of the measured points as reference point, one can compare the

measurements with the theory. In a similar way the measured attenuation can be

compared with thi theoretical value. (Fig. (3).)

In our experiment the length of the sample was several (10 - 15) wave-

lengths long. Consequently, owing to the relatively strong attenuation, the
3)

magneto plasma resonance observed by LIBSCHABER and VEILEX could not be

observed in our case.

We are presently preparing a new experiment in which we hope to see both the

main and the satellite magneto plasma resonances in indium antimonide.

For dipole modes Eq. (12) gives

2 = -G+ ti 2
2 +G + 2G(c -Ed)

(14)

22 2

with G = :2,m,,
2 p a '

m = 1, for the main resonance and

m = 2, 3 ... for the satellite resonances.

A numerical analysis of a reasonable case, shows that the spacing between

the main and the proper secondary resonances is very small, but that the un-

loaded Q-values of the resonances are so large that the different resonances

shall be separable. This means that the coupling to the semiconductor sample

must be very small, in order not to lower the Q-values too much. We hope to

achieve this low coupling, simply by applying metal irises to the end-faces of

the saple.
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VI. VARIATION OF PLASMA PARAMETERS ALONG THE POSITIVE COLUMN OF A MERCURY

DISCHARGE

This investigation is a continuation of the work described in ref. 1, where

experimental studies of the variation of the electron density along the positive

column of a low-pressure mercury discharge are described. The electron density

was measured by means of the microwave cavity method. It is the purpose of this

experiment to obtain more information on the a;ial variation of the plasma para-

meters by introducing Langmuir probes, so that also the electron temperature and

the axial d.c. electric field in the plasma can be measured.

The discharge tube (Fig. 1) has a length of 1 m, an inner diameter of 12 mm

and an outer diameter of 15 mm. The neutral gas density is controlled by keeping

the glass wall around the cathode at constant temperature Tg, which is below the

temperature of the rest of the tube. Seven Langmuir probes are inserted along

the tube with a distance of 14 cm between them. Only the circular end surfaces

are exposed to the plasma and are situated on the axis of the tube. A sawtooth

voltage with a sweep frequency of 50 c/s, is applied to the probes and a

logarithmic current vs. linear voltage characteristic displayed on an

oscilloscope (Fig. 2) after compensation for the ion-current. The circuitry is

essentially the same as described by LPR 2 . The linear slope of the characteristic

is a measure of the electron temperature and is determined by comparison with a

reference line, the slope of which can be varied. The electron density can be

determined from the saturation current when the area of the probe and the

electron temperature are known.

Figs. 3 and 4 show the electron temperature and density at one place in the

tube as a function of T for various tube current3. The density is measured with
g

the cavity method. The results shown in the figures are in qualitative agreement
3)

with aJAP .F-LD3 .

The variation of electron temperature along the tube is shown in Fig. 5.

Apart from the maximum in the centre of the tube the variation indicates that

there is a small positive pressure gradient towards the anode. Such pressure

gradients have been discussed by .ARFELD and POLHTAEV 4 . The maximum of electron

temperature is however not understood.

The determination of electron density with probe measurements depends on the

effective area of the probe which is difficult to determine accurately. The

relative areas of the probes are found by measuring the censity with the micro-

wave cavity method at a small discharge current (100 mA). While the probe

measurements give the density at the axis of the tube, the cavity method gives
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I"I

approximately the mean density across the tube. If we assume that the radial

density distribution is constant along the tube for I x 100 mA, the relative

areas can be determined with good accuracy. Furthermore, we assume that the

effective areas are independent of the tube current in the current region of

our measurements.

Pig. 6 shows the axial variation of electron density measured by the probe

method and the cavity method. The probe measurements are relative in the sense

that N(probe) is put equal to N(cavity) for a tube current of 100 mA. The

difference between the results of the probe measurements and the results of the

cavity measurements indicates that the radial density distribution changes

along the tube. This effect is more clearly demonstrated in Fig. 7 where a =

N(probe)/N(cavity) is plotted. This ratio which is normalized to unity at

100 IA is approximately proportional to N a/N under the above mentioned
max mean

assumptions. It is seen that a is approximately constant over the greater part

of the-tube but decreases near the anode and near the cathode. In general it is

increasing with the current.

If we assume that the pressure gradient causes the variation of electron

density and temperature, and that these are determined by the local pressure,

we can determine the pressure gradient from the measurements of the electron

density distriiution or the electron temperature distribution as plotted in

Fig. 8. If we neglect the maximum of electron temperature, the variation of both

the density and the temperature is in agreement with a positive pressure gradient,

which can be determined to be about 1.3 x 10 mm Hg/cm. This figure is in good

agreement with Kiarfeld and Poletaev, who do not, however, take into account the

gradient in electron density in their theoretical considerations.

The axial electric field has also been measured and was determined by using

the probe characteristics to find the plasma potential at the different probe

positions.. The electric field was found to inGrease slightly towards the anode.

Similarly, a higher gas pressure incieased the field at a fixed position (Fig, 9).

No dependence on the current could be observed (current range 100 - 600 mA).

As a concluaion we can say that the plasma parameters vary along the tube

approximately in accordance with an increasing pressure towards the anode, with

one major exception in the electron temperature. We intend to extend the

measurements to higher gas pressures and possibly measure the pressure and its

variation along the tube by spectroscopic means in order to get a unified picture

of the phenomena.
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Nmax/Nmcan normalized to unity at I 100 mt..
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Fig. 8. Variation of electron temperature and density along the tube for

various gas pressures. I = 400 mA.
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VII. EXPERn&Z9ZLS- ONNO1SE E.ADIATION-FROMA

PLASMA IN A WAVEGUIDE

Introduction

The work reported here is a continuation of our earlier

experiments on noise radiation and coherent scattering from a

low-pressure plasma column in free space and in a waveiuide.

The experiments are connected to the theoretical investigation,

which is described elsewhere in this report. The experimental

investigation is being continued and the results reported here

are only preliminary. AGDUR et. al. have published experimental

data on noise radiation and scattering from a plasma column in

free space and in a waveguide. Strong polarization of noise was

observed in the region of secondary peaks. The aim of this

report is to present more experimental data on noise radiation

from a cylindrical plasma column situated in a waveguide.

Experimental set-up

The noise power radiated from the plasma column was

measured by means of a radiometer, operating at a frequency of

3100 Mc/s with a bandwidth of 10 Mc/s. A block diagram of the

radiometer used is shown in Fig. 1. The noise radiation from

the plasma column was compared with the noise radiation from a

calibrated noise source. In this way, drift and nonlinear effects

of the post r.f. amplifier were eliminated. The combined noise

signal was then amplified in a low noise travelling wave tube

and an I. F. amplifier erating at 30 Mc/s with a bandwidth of

10 Mc/s. The arnplifiet' signal was rectified by a "square law"

detector and the resulting low frequency signal was fed into a

selective amplifier (f = 70 c/s, Af = 5 c/s) followed by a synchronous

detector and integrator with an integration constant of 15 sec. The

lowest detectible temperature change was about 20°K.

The noise power radiated from a plasma tube in a frequency

interval Af is spread over an infinite number of modes. Only the noise
power carried by the dominant mode of the waveguide will reach the

radiometer. It should be pointed out that no attempt was trade to

match the plasma tube to the waveguide system. Therefore one

cannot relate the electron temperature and the noise power in a

simple way. Simultaneous measurements of the frequency spectra

for noise, scattering and absorption were made for two typical

positions of the plasma.tube: one with the. E-vector of the dominant
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waveguide mode (TE0 1 ) parallel with the plasma tube and the

other with the E-vector perpendicular to the plasma tube. We

will here cail them transverse and longitudinal polarization.

See Fig. 3.

Two experimental mercury vapour discharge tubes with

hot cathodes were used, having a diameter of 7 and 12. 5 mm

respectively. The neutral gas density could be varied from

5- 1019 to 3. 10 molekules/m 3 . The electron density was

measured by means of the microwave cavity method.

Measurements

By means of the experimental arrangement the following

data can be obtained as functions of the electron- and neutral

gas density: (i) radiated noise power from the plasma tube, (ii)

absorption, transmission and reflection of a coherent microwave
signal (iii) exitation and propagation of slow wave plasma modes

along the plasma column.

Transverse polarization

The measured emission and absorption spectra have

substantially the same shape. This similarity indicates that

the plasma investigated is in thermal equilibrium.

The spectra of noise and absorbed power possess sharp

maxima at substantially the same frequencies as the maxima for

the TONKS-DATTNER resonances. The noise radiation and the

absorption at the dipole resonance depend strongly on collision

frequency and the plasma tube diameter. Ac low neutral gas

densities where the mean free path of the electrons is several

times larger than the diameter of the plasma tube, wall collisions

are more frequent than volume collisions. Under these conditions

and if the diameter of the plasma tube is small compared with the

wavelength (d/X << 1), the shape of the noise and scattering spectra

is nearly the same (see Fig. 4). When the tube diameter is in-

creased the transmission at the dipole resonance tends to zero

and the noice radiated decreases rapidly. The shape of the

spectra for TONKS-DATTNER resonances, however, remains

unchanged. (See Fig. 5.)
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At higher neutral gas densities the mean free path

of electrons becomes smaller than the diameter of the plasma

tube and the volume collisions get more frequent. The noise

spectrum for the case when the volume collisions are predominant

is shown in Fig. 6. The noise radiation at the dipole resonance

increases with collision frequency and becomes comparable to

the radiated noise power at TONKS-DATTNER resonances.

The microwave fields in the waveguide can excite slow

waves which will propagate along the plasma column, and couple

energy out of the waveguide. In the frequency range where the

dipole resonance occurs, a backward-wave with one variation of

the electric field in azimuthal direction (dipole plasma mode)
will propagate. Small peaks in the noise and scattering spectra

are observed, which are related to the excitation of these modes.

(See Figs. 5 and 6.)

Longitudinal polarization

The noise level for longitudinal polarization is about

10 dB below the noise level for transversal polarization. As

shown in Figs. 4, 7 and 8 the noise power increases linearly
2

with the plasma density (P. -'Wp). The noise spectrum possesses
n p

maxima at frequencies for TONKS-DATTNER resonances. However,

no noise peak was measured at the dipole resonance. At the end of

the bandpass of the backward-wave a sharp maximum in noise and

absorption spectra occurs as shown in Figs. 7 and 8.

References

B. Agdur, B. Kerzar and F. Sellberg, Noise Radiation and scatter-
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VIII MICROWAVE EMISSION FROM A CYLINDRICAL PLASMA

Introduction

The equipartition theorem ascribes an energy kT to each degree

of freedom in a medium in thermal equilibrium. In a gas of noninter-

acting particles the degrees of freedom are those associated with the

individual particle motion. In contrast to this result Bohm and Pines" 1

in one of their classic papers showed that in an electronic plasma some

of the degrees of freedom are distributed in collective incdes or plasma

oscillations of a longitudinal character. As shown for instance by the

present authork such longitudinal oscillations cannot exist in bounded

plasma without coupling to external wave fields. In other words one

would expect thermally excited collective modes to radiate. The basic

assumption of the present work is that the radiation reaction has a

small effect on the electronic motion and that the emitted power spec-

trum can be calculated assuming thermal equilibrium.

Experimental information on the emission spectrum has been

published by Agdur et. al. who measured the microwave noise radia-

tion from a plasma cylinder as a function of frequency for polarization

directions parallell and perpendicular to the axis. (Below we will

refer to polarizations as TE and TM-modes respectively when the

axial component of the electric or magnetic field is equal to zero.)

Agdur et. al. measured a smooth spectrum for scattered TM waves

and the wellknown resonance structure (see e.g. Dattner ) ) for scattered

TE waves. TZ-noise possessed an irregular spectrum with several

small peaks whereas TM-noise was of much lower intensity and was

not resolved into any particular structure. Later experiments by the

same group which have given a inore detailed information about these

phenomenon have shown that .both polarizations now appear to have

spectra practically identical to that of scattered TE-radiation.
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A first attempt to explain these results was made in(? As

to the scattering spectrum the experimental results are now well ex-

plained 2 ' 6, 7). The multiple resonances arise due to excitaticri of

longitudinal w aves perpendicular to the cylinder axis. The radially

inhomogeneous density distribution of the electrons strongly mcdify

the dispersion relation of these waves to give the observed spectrum,

Assuming Rytov's (8) generalization of Kirchhoff's law to be valid, one

should be able to use the same model, calculate the absorbtivit-' and

predict the noise spectrum. This scheme was carried out in for

TE-waves emitted perpendicularly to the axis and lead to the sane

frequency spectrum as for scattered waves of the same kind. As the

measurements give the total emitted TE Poynting flux which ccnta n

contributions from obliquely emitted TIE--waves, we cannot irnmedia-

tely conclude that experimental and theoretical results agree, -I- scsm

likely, however, that the obliquely emitted Tt -waves vill be coupicd

to the longitudinal oscillations and have approxirnztely the same fre-

quency spectrum as the normally emitted ones. The purpose of the

present paper is to show what may be less evident, that we wil! get

obliquely emitted TM-waves with the same frequency spectrum thereby

explaining the experimental results for this polarization direction. The

basic idea is that thermal fluctuations will not only excite col-ecive

oscillations in phase along the column but also oscillations of arbitrary

phase variation. In fact if the length of the cylinder is assumed to be

infinite the result of Bohm and Pines is immediately applicable and we

should have equally strong excitation for all axial wave numbers up to

about one recipical Debye length after which the single particle degrees

of freedom dominate. This argument suggests that fluctuatig electric

fields directed along the axis will be generated. The subsequent rather

lengthy calculations will support this suggestion and show that a radia-

tion field with nonzero electric vector along the axis is produced.

Using Hughyens principle this result can easily be understood if we

pick out one single mode with axial wave number k of dipole character

in the r-qp plane it is realized with reference to figure 1, that we will

Vget a radiation field of waves propagating at an angle 9 to the normal

of the cylinder axis.
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Description of the plasma

For our present purposes it is adequate to describe the plasma

by means of hydrodynamic equations and to include the effect of the

ions as a neutralizing background only. This model does not contain

thermal fluctuations but is easy -to handle when considering geometric

complications.

As in?)we will treat the scattering problem and then rely on

Kirchhoffs law to give the fluctuation psectrum. After linearizing and

assuming the plasma to be homogeneous and all perturbations to vary

as e - ~At we get

1. -isN + N 0div7=O

2. -IWv = - eE/in- (w 2 /N 0 ) grad N

In addition we have Maxwell's equations.

3. curl E = i

4. curl R- -N 0eiv - im E
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S. div 0 E- - eN

6. div M = 0

Eq. 1 is of course redundant but is convenient to keep explicity.

It was shown in(2) that Eq. I - 6 can be reduced to

7. VAB +(w 2
6 /c 2 3= 0

and

8. VN 4( 2 c/w 2 )N 0

with
2 22 2 291 1 - 10/ID = I No0 0/g OmOWz

and appropriate relations between E, V, B and N. In the present

context we have found it more convenient to introduce the electromag-

netic potentials IA and 0. As usual we put
1 0. IB = curl IA

It turns out that by a suitable choice of gauge the resulting

wave equations can be considerably simplified. The key to this simp-

lification is that as seen from Eq. 4 the curreni -140e is composed of

two parts, one due to electron motion caused by the average field and

one caused by thermal motion and density gradients. The first part of

this current is easy to include in a frequency dependent permittivity,

the second is irrotational and can be removed from the source term by

a suitable gauge transformation. Thus if we put

11. 0= -v e/7E cc 0 ) N

it is easy to show that the resulting wave equations are

12. 72 1A4I(.7s/c 2 ) = 0

'Z 2 213. 7 0+(Ds/w ) = 0

14. div IA 0

15. E = -iUmA - W

The transversality condition 14 shows that eq. 12 represents

transverse waves which in the absence of boundaries are uncoupled to

j- the longitudinal waves represented by Eq. 13. Boundary conditions

are as usual continuity of the tangential components of the E and 1B

fields. In addition because of the presence of a longitudinal component

we need a boundary condition on 0. This is obtained from the require-

ment that the normal component of the particle current must vanish at

the boundary. Expressing this current in terms of the potentials we get

16. Tz-- 0 a( + iW VO)
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.... bUiqw scattering- of T-waves
For oblupe-incidence of a TM wave we will get excitation of

both TM and TE components. In ordr- to erive suitable eprassioms-

for the TE waves we introduce the sup.rpotential. -defined by

17. /ATE a curl -TE

In addition to Eq:s 12 - 15, describing the fields in the plasma,

we have the usual free space wave equation outside the cylinder. De-

composing the solutions into TM and TE components and choosing

boundary conditions at infinity corresponding to an incoming plane

wave and an outgoing scattered wave, we. get in vacuum:
ik i(n k:

ATM :ik z n [J (a r) + a H'(& r)] ei(' + k z)

TM k zi(nip + kz z)18. 1 A 2 j a)+ H(r

ATM [jn(a r) + a H (ar)] e n  +kIz)z - n n n

TE A ka H i(nre + k z)= z X V n H' (a r) e
r ni n n

19. TM k:- za i(n
-= n  n n n (a r

0. r

TM i(n + k z )IL -a Eb H( fr) ez n nn

a denotes the cylinder radius and we have also introduced the abbrfl-

viations

20. a 2 C kz = .20 =coseO, k2 =- sine
c c

and dropped the superscript ( t ) on the Hankel functions, an and b are

arbitrary constants to be determined by the boundary conditions. Prime

denotes derivative with respect to argument. To get the transverse

fields in the plasma we use the same expression with the modification

that new constants (dn and f n are introduced, the Hankel functions are

replaced by Bessel functions regular at the origin, the incoming wave

term is omitted and a in the argument is replaced by a' defined by

2
21. ao.2 (f -in 0)

C
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We also get for the scalar potential
i(n9 + kz z)

22. * z: = gn Jn(or)e a

with
M2W 2 2

23.-' (s -- sin e)
w C

Applying boundary conditions at r x a we get the following set

of equations for the determination of the constants a. b , d, f and

g 3n"')an[(0.JkbH(& kn i
kn~~ 2 n mn('

- . Jn(a.' a) Jnia g

Jn(a a) + an Hn( a)Jn(a'a)dn - z n(a) gn

24. k n, --. !-.H{.a) -; 3;(a.)+aH(.a) :- J(')d
= n n . "n

a a aca.ad-

2

2cz 2a2

is ('a'a f - n ( Aa g

j n'(a. 'a) dn +.H4 3 Tn(a 'a) agn Jn((a) = 0

b H(a a) b fJT(a'a)

Solving for bn, the amplitude of the scattered TE-waves, we get

25. b =n nSn a nn

zz

where H(a 'aan J nl(a a)
2Za. n k(a 2 2(Da) ] 2 ___a

I'.l a)pa2 a' a2 • '(a " a)H'la a)28. S -n PJ'(a) Jd(+'a) a' aa) H'(a.a .,Pa) 0

an jn C a' nn

baa TT.I H aa) =e (a. a)
-n n nnLg

Solvng or no he mpltud of he catere TE-ave, w ge

JT n ( a) Q
25. b5 T
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30. T a a a) - a n

To find possible resonance conditions we now study the expres-

sion 25 in the limit wa/c << I i. e. when the vacuum wavelength be-

comes much larger than the plasma radius. From the Taylor expansions

of the Bessel functions involved it is easily seen that unless the real part

of the bracket in the denomination of 25 vanishes, bn is of the order

(wa/c) 2 n . (We disregard the factor (ka)- I which originates from the

fact that abn is the amplitude of whereas the amplitude of IA in the

incoming wave is put equal to unity) If, however,

nJn(Pa) - 1

31. -PaJ'Pa -_Z

the real part of the bracket vanishes and b becomes of the order ofn

unity. We observe that in the limit2!: << I no dependence on the angle
c

of incidence appears in equation 31. The resonance condition 31 coin-

cides with the resonance condition obtained in(Z) for perpendicularly

incident TE-waves. This should not be surprising as the resonances

are caused by longitudinal waves perpendicular to thecylinder axis.

These waves are coupled to transverse fields only-by a radial density

discontinuity at the boundary. Keeping this physical picture in mind,

one'would not expect a phase difference along te cylinder axis to alter

the resonance conditions. This lack of dependence on the angle of

incidence is important to remember when discussing experimental
results. As we will outline below the noise frequency spectrum will

have peaks when 31 is satisfied. If there were a strong angular de-

pendence, this would show up as a broadening of the peaks in the mea-

sured spectrum which is the cos 8-weighted sum of all waves emitted
with a component of the electric vector along the cylinder axis. In the

experiments of Kerzar there is no evidence of any additional broading

in the noise spectra as compared to the scattering spectrum for nor-

mally incident TE-waves.
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It should also be noted that for normally incident TM-waves2 2
the factor e /kz in the denominator of Eq. 25 will make b. equal to

zero even at frequencies when 31 is satisfied. For completeness we

give the scattered TM amplitude for normal incidence

V (a a)
(a _ a a n QIa

32 a j n (a a) r n 7 n (a a -n 3 n(ia,

n fln~a a a J a 9aaa L a)
J a0a a a)

which is seen to possess no resonances and tend rapidly to zero with

,a/c.

Noise spectrum

Assuming Rytov's result to apply we should now be able to

calculate the spontaneously emitted energy per unit surface as frequency

a as

kT33. p Aw

with

34. A = f. * dCU J Re (E i x ]H I)
1 1

where index i stands for incident radiation.

Now it was shown in(2) that for the present model we have

35. A ( Z Rej. Edvll dv

with 2

36. m- y
my

This is an assumption to be verified by the results as Kirch-

hoff's law is derived either in the approximation of geometrical optics

or by Rytov in media where the relation between E and ) is local and

linear. Our model is equivalent to a nonlocal linear relation.
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The collision frequency, v c, is defined as the recipical mo-

mentum relaxation time. A term accounting for this dissipation must

now be added to equation 2. Inserting 16 in-35 and using ume simple

vector identities we get

244 4Z
37. : o 2 j dv+ 6 1° 2 dv+

2 22

0*

As was done in we now assume that JA and * can be obtained

neglecting v c" It is then a straight forward, but tedious, procedure

to insert IA and 0 from 17, 18 and 22, carry out all integrations which

turn out to be elementary and insert constants of integration from 24.

We omit these calculations here and quote the main result only. The

absorbtivity A possesses sharp maxima at frequencies given by 31,
if wa/c << 1. Consequently we have shown that in thermal equilibrium

the noise radiation with the E-vector parallell to the cylinder axes

should possess the same frequency spectrum as for instance scattered

TE-waves. There also seems to be good reason to believe that the

noise spectrum, as has been shown for the scattering spectrum, should

be strongly modified by the non-homogeneous radial densitydistr. atd Ie

agree well with experimental results. The measured noise spectra

therefore appears to give good evidence for the result of Bohm and

Pines that part of the kinetic energy in a plasma is distributed over

the collective degrees of freedom.

i



122.

References

() Pines, D.,, Bohm, D., Phys. Rev. 85, 338 (1952).

(2) Weiss glas, P.,. J. Nuci. En. Pt. C. In press.

(3) Agdur,. B., Kerzar, B., Seflberg, F. Phys. Rev. 128.,1(1963)

(4) Dattner, A., Ericsson Technics 1,.(1961).

(5) Kerzar, B. Private communication.

(6) Nickel, J. C., Parker, J. V., Gould,, R. W.

Phys. Rev. Letters It. 183 (1963).

(7) Crawford, F. W. M. L. Report No. 1045. Stanford Univ.

(8) Rytov, S. M. Theory of Electrical Fluctuations and

Thermal Radiation. Academy of Sciences Press, Moscow.



ca .4
12, 

d a.
%n w i%n~o I~

4410 0 > .

> z 3u
r4 -40 a

Q10 N -0O

0 u0 to 4Id 0 04 P

:2r

0~ d a

jN z

0. 

0I- 

4 & 
-4


